Answer :

To solve the expression [tex]D = \frac{243 \times 625 \times 128}{64 \times 27 \times 125}[/tex], we'll break it down step-by-step.

First, we'll look at simplifying both the numerator and the denominator separately:

  1. Numerator: [tex]243 \times 625 \times 128[/tex]

    • [tex]243[/tex] can be expressed as [tex]3^5[/tex].
    • [tex]625[/tex] can be expressed as [tex]5^4[/tex].
    • [tex]128[/tex] can be expressed as [tex]2^7[/tex].

    So, the numerator can be rewritten using prime factorization:
    [tex]243 \times 625 \times 128 = 3^5 \times 5^4 \times 2^7[/tex]

  2. Denominator: [tex]64 \times 27 \times 125[/tex]

    • [tex]64[/tex] can be expressed as [tex]2^6[/tex].
    • [tex]27[/tex] can be expressed as [tex]3^3[/tex].
    • [tex]125[/tex] can be expressed as [tex]5^3[/tex].

    So, the denominator can be rewritten as:
    [tex]64 \times 27 \times 125 = 2^6 \times 3^3 \times 5^3[/tex]

Now, substitute these into the original expression:
[tex]D = \frac{3^5 \times 5^4 \times 2^7}{2^6 \times 3^3 \times 5^3}[/tex]

Next, we'll simplify by canceling out the common factors in the numerator and the denominator:

  • For [tex]3^5 / 3^3[/tex], subtract the exponents: [tex]5 - 3 = 2[/tex], so we get [tex]3^2[/tex].
  • For [tex]5^4 / 5^3[/tex], subtract the exponents: [tex]4 - 3 = 1[/tex], so we get [tex]5^1[/tex].
  • For [tex]2^7 / 2^6[/tex], subtract the exponents: [tex]7 - 6 = 1[/tex], so we get [tex]2^1[/tex].

Thus, we have:
[tex]D = 3^2 \times 5^1 \times 2^1[/tex]

Now calculate the simplified exponents:

  • [tex]3^2 = 9[/tex]
  • [tex]5^1 = 5[/tex]
  • [tex]2^1 = 2[/tex]

Finally, multiply them together:
[tex]D = 9 \times 5 \times 2 = 90[/tex]

Therefore, the simplified value of [tex]D[/tex] is [tex]90[/tex].

Thank you for reading the article Simplify the expression D frac 243 times 625 times 128 64 times 27 times 125. We hope the information provided is useful and helps you understand this topic better. Feel free to explore more helpful content on our website!

Rewritten by : Jeany