Thank you for visiting Divide using long division tex frac 3x 5 22x 4 13x 3 39x 2 14x 6 x 3 6x 2 3x 5 tex Show your. This page is designed to guide you through key points and clear explanations related to the topic at hand. We aim to make your learning experience smooth, insightful, and informative. Dive in and discover the answers you're looking for!
Answer :
We wish to divide
[tex]$$
-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6
$$[/tex]
by
[tex]$$
x^3 + 6x^2 - 3x - 5.
$$[/tex]
We perform the division step by step.
–––––––––––
Step 1:
Divide the leading term of the numerator, [tex]$-3x^5$[/tex], by the leading term of the denominator, [tex]$x^3$[/tex]. This gives
[tex]$$
\frac{-3x^5}{x^3} = -3x^2.
$$[/tex]
Multiply the entire denominator by [tex]$-3x^2$[/tex]:
[tex]$$
-3x^2(x^3 + 6x^2 - 3x - 5) = -3x^5 - 18x^4 + 9x^3 + 15x^2.
$$[/tex]
Subtract this product from the original numerator:
[tex]\[
\begin{array}{rcl}
(-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x -6) & - & (-3x^5 - 18x^4 + 9x^3 + 15x^2) \\
& = & (-3x^5 + 3x^5) + (-22x^4 + 18x^4) + (-13x^3 - 9x^3) \\
& & +\; (39x^2 - 15x^2) + 14x - 6 \\
& = & -4x^4 - 22x^3 + 24x^2 + 14x - 6.
\end{array}
\][/tex]
–––––––––––
Step 2:
Now, divide the new leading term, [tex]$-4x^4$[/tex], by the leading term of the denominator, [tex]$x^3$[/tex]. This gives
[tex]$$
\frac{-4x^4}{x^3} = -4x.
$$[/tex]
Multiply the denominator by [tex]$-4x$[/tex]:
[tex]$$
-4x(x^3 + 6x^2 - 3x - 5) = -4x^4 - 24x^3 + 12x^2 + 20x.
$$[/tex]
Subtract this from the previous result:
[tex]\[
\begin{array}{rcl}
(-4x^4 - 22x^3 + 24x^2 + 14x - 6) & - & (-4x^4 - 24x^3 + 12x^2 + 20x) \\
& = & (-4x^4 + 4x^4) + (-22x^3 + 24x^3) + (24x^2 - 12x^2) \\
& & +\; (14x - 20x) - 6 \\
& = & 2x^3 + 12x^2 - 6x - 6.
\end{array}
\][/tex]
–––––––––––
Step 3:
Finally, divide the new leading term, [tex]$2x^3$[/tex], by [tex]$x^3$[/tex]:
[tex]$$
\frac{2x^3}{x^3} = 2.
$$[/tex]
Multiply the denominator by [tex]$2$[/tex]:
[tex]$$
2(x^3 + 6x^2 - 3x - 5) = 2x^3 + 12x^2 - 6x - 10.
$$[/tex]
Subtract this product from the previous result:
[tex]\[
\begin{array}{rcl}
(2x^3 + 12x^2 - 6x - 6) & - & (2x^3 + 12x^2 - 6x - 10) \\
& = & (2x^3 - 2x^3) + (12x^2 - 12x^2) + (-6x + 6x) + (-6 + 10) \\
& = & 4.
\end{array}
\][/tex]
–––––––––––
Conclusion:
The quotient obtained from the division is
[tex]$$
-3x^2 - 4x + 2,
$$[/tex]
and the remainder is [tex]$4$[/tex]. Thus, we can write the division in the form
[tex]$$
\frac{-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6}{x^3 + 6x^2 - 3x - 5} = -3x^2 - 4x + 2 + \frac{4}{x^3 + 6x^2 - 3x - 5}.
$$[/tex]
This completes the long division process.
[tex]$$
-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6
$$[/tex]
by
[tex]$$
x^3 + 6x^2 - 3x - 5.
$$[/tex]
We perform the division step by step.
–––––––––––
Step 1:
Divide the leading term of the numerator, [tex]$-3x^5$[/tex], by the leading term of the denominator, [tex]$x^3$[/tex]. This gives
[tex]$$
\frac{-3x^5}{x^3} = -3x^2.
$$[/tex]
Multiply the entire denominator by [tex]$-3x^2$[/tex]:
[tex]$$
-3x^2(x^3 + 6x^2 - 3x - 5) = -3x^5 - 18x^4 + 9x^3 + 15x^2.
$$[/tex]
Subtract this product from the original numerator:
[tex]\[
\begin{array}{rcl}
(-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x -6) & - & (-3x^5 - 18x^4 + 9x^3 + 15x^2) \\
& = & (-3x^5 + 3x^5) + (-22x^4 + 18x^4) + (-13x^3 - 9x^3) \\
& & +\; (39x^2 - 15x^2) + 14x - 6 \\
& = & -4x^4 - 22x^3 + 24x^2 + 14x - 6.
\end{array}
\][/tex]
–––––––––––
Step 2:
Now, divide the new leading term, [tex]$-4x^4$[/tex], by the leading term of the denominator, [tex]$x^3$[/tex]. This gives
[tex]$$
\frac{-4x^4}{x^3} = -4x.
$$[/tex]
Multiply the denominator by [tex]$-4x$[/tex]:
[tex]$$
-4x(x^3 + 6x^2 - 3x - 5) = -4x^4 - 24x^3 + 12x^2 + 20x.
$$[/tex]
Subtract this from the previous result:
[tex]\[
\begin{array}{rcl}
(-4x^4 - 22x^3 + 24x^2 + 14x - 6) & - & (-4x^4 - 24x^3 + 12x^2 + 20x) \\
& = & (-4x^4 + 4x^4) + (-22x^3 + 24x^3) + (24x^2 - 12x^2) \\
& & +\; (14x - 20x) - 6 \\
& = & 2x^3 + 12x^2 - 6x - 6.
\end{array}
\][/tex]
–––––––––––
Step 3:
Finally, divide the new leading term, [tex]$2x^3$[/tex], by [tex]$x^3$[/tex]:
[tex]$$
\frac{2x^3}{x^3} = 2.
$$[/tex]
Multiply the denominator by [tex]$2$[/tex]:
[tex]$$
2(x^3 + 6x^2 - 3x - 5) = 2x^3 + 12x^2 - 6x - 10.
$$[/tex]
Subtract this product from the previous result:
[tex]\[
\begin{array}{rcl}
(2x^3 + 12x^2 - 6x - 6) & - & (2x^3 + 12x^2 - 6x - 10) \\
& = & (2x^3 - 2x^3) + (12x^2 - 12x^2) + (-6x + 6x) + (-6 + 10) \\
& = & 4.
\end{array}
\][/tex]
–––––––––––
Conclusion:
The quotient obtained from the division is
[tex]$$
-3x^2 - 4x + 2,
$$[/tex]
and the remainder is [tex]$4$[/tex]. Thus, we can write the division in the form
[tex]$$
\frac{-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6}{x^3 + 6x^2 - 3x - 5} = -3x^2 - 4x + 2 + \frac{4}{x^3 + 6x^2 - 3x - 5}.
$$[/tex]
This completes the long division process.
Thank you for reading the article Divide using long division tex frac 3x 5 22x 4 13x 3 39x 2 14x 6 x 3 6x 2 3x 5 tex Show your. We hope the information provided is useful and helps you understand this topic better. Feel free to explore more helpful content on our website!
- You are operating a recreational vessel less than 39 4 feet long on federally controlled waters Which of the following is a legal sound device
- Which step should a food worker complete to prevent cross contact when preparing and serving an allergen free meal A Clean and sanitize all surfaces
- For one month Siera calculated her hometown s average high temperature in degrees Fahrenheit She wants to convert that temperature from degrees Fahrenheit to degrees
Rewritten by : Jeany