Thank you for visiting 1 What are the characteristics of a normal distribution 2 What is a z score 3 An AP Statistics teacher grades using z scores On. This page is designed to guide you through key points and clear explanations related to the topic at hand. We aim to make your learning experience smooth, insightful, and informative. Dive in and discover the answers you're looking for!
Answer :
Using a standard normal distribution table or a calculator, we can find the area to the right of a z-score of 1.50, which is approximately 0.0668 or 6.68%. Therefore, approximately 6.68% of bags contain more than 4.33 ounces.
1. The characteristics of a normal distribution include a symmetric bell-shaped curve, with the mean, median, and mode all coinciding at the center of the distribution. The distribution is characterized by its mean and standard deviation, which determine its shape and spread. It follows the empirical rule, also known as the 68-95-99.7 rule, where approximately 68% of the data falls within one standard deviation of the mean, about 95% falls within two standard deviations, and around 99.7% falls within three standard deviations.
2. A z-score, also known as a standard score, is a measure of how many standard deviations a particular data point is away from the mean of a distribution. It is calculated by subtracting the mean from the data point and dividing the result by the standard deviation. The z-score allows us to compare and interpret individual data points in the context of the distribution they belong to.
3. The correct interpretation of a z-score of -1.3 for a student's grade on the second exam is option c: The student scored 1.3 standard deviations lower on the second exam than on the first. The z-score represents how far the student's grade deviates from the mean grade on the first exam, measured in terms of standard deviations. A negative z-score indicates a score below the mean.
4. To determine the percentage of applicants considered for admission with scores below 750, we need to calculate the z-score for the score 750 using the formula (score - mean) / standard deviation. The z-score is (750 - 680) / 35 ≈ 2.0. Using a standard normal distribution table or a calculator, we can find that the area to the left of a z-score of 2.0 is approximately 97.7%. Since we want the percentage of scores below 750, we subtract this value from 100% to get approximately 2.3%.
5. To find the proportion of response times between 19 and 30 minutes, we need to calculate the z-scores for both values. The z-score for 19 minutes is (19 - 22) / 11.9 ≈ -0.252, and the z-score for 30 minutes is (30 - 22) / 11.9 ≈ 0.671. Using a standard normal distribution table or a calculator, we can find the area between these two z-scores, which is approximately 0.4404 or 44.04%. Therefore, approximately 44.04% of their response times fall between 19 and 30 minutes.
6. To determine the proportion of bags that contain more than 4.33 ounces, we need to calculate the z-score for this weight using the formula (weight - mean) / standard deviation. The z-score is (4.33 - 4.18) / 0.10 ≈ 1.50. Using a standard normal distribution table or a calculator, we can find the area to the right of a z-score of 1.50, which is approximately 0.0668 or 6.68%. Therefore, approximately 6.68% of bags contain more than 4.33 ounces.
Learn more about standard deviation here:
https://brainly.com/question/13498201
#SPJ11
Thank you for reading the article 1 What are the characteristics of a normal distribution 2 What is a z score 3 An AP Statistics teacher grades using z scores On. We hope the information provided is useful and helps you understand this topic better. Feel free to explore more helpful content on our website!
- You are operating a recreational vessel less than 39 4 feet long on federally controlled waters Which of the following is a legal sound device
- Which step should a food worker complete to prevent cross contact when preparing and serving an allergen free meal A Clean and sanitize all surfaces
- For one month Siera calculated her hometown s average high temperature in degrees Fahrenheit She wants to convert that temperature from degrees Fahrenheit to degrees
Rewritten by : Jeany