Thank you for visiting Simplify the expression tex frac 3x 5 22x 4 13x 3 39x 2 14x 6 x 3 6x 2 3x 5 tex. This page is designed to guide you through key points and clear explanations related to the topic at hand. We aim to make your learning experience smooth, insightful, and informative. Dive in and discover the answers you're looking for!
Answer :
Certainly! We can solve this problem by performing polynomial long division of the given polynomials.
Step-by-step Polynomial Long Division:
We need to divide the numerator [tex]\( -3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6 \)[/tex] by the denominator [tex]\( x^3 + 6x^2 - 3x - 5 \)[/tex].
1. Divide the first term of the numerator by the first term of the denominator:
[tex]\[
\frac{-3x^5}{x^3} = -3x^2
\][/tex]
This becomes the first term of our quotient.
2. Multiply the entire divisor by this term:
[tex]\[
(-3x^2)(x^3 + 6x^2 - 3x - 5) = -3x^5 - 18x^4 + 9x^3 + 15x^2
\][/tex]
3. Subtract the result from the original numerator:
[tex]\[
(-3x^5 - 22x^4 - 13x^3) - (-3x^5 - 18x^4 + 9x^3) = 0x^5 - 4x^4 - 22x^3
\][/tex]
Bring down the next term from the original numerator:
[tex]\[
-4x^4 - 22x^3 + 39x^2
\][/tex]
4. Repeat the process:
- Divide the first new term by the first term of the divisor:
[tex]\[
\frac{-4x^4}{x^3} = -4x
\][/tex]
- Multiply the entire divisor by this term:
[tex]\[
(-4x)(x^3 + 6x^2 - 3x - 5) = -4x^4 - 24x^3 + 12x^2 + 20x
\][/tex]
- Subtract:
[tex]\[
(-4x^4 - 22x^3 + 39x^2) - (-4x^4 - 24x^3 + 12x^2) = 0x^4 + 2x^3 + 27x^2
\][/tex]
Bring down the next term:
[tex]\[
2x^3 + 27x^2 + 14x
\][/tex]
5. Repeat again:
- Divide:
[tex]\[
\frac{2x^3}{x^3} = 2
\][/tex]
- Multiply:
[tex]\[
2(x^3 + 6x^2 - 3x - 5) = 2x^3 + 12x^2 - 6x - 10
\][/tex]
- Subtract:
[tex]\[
(2x^3 + 27x^2 + 14x) - (2x^3 + 12x^2 - 6x) = 0x^3 + 15x^2 + 20x
\][/tex]
Bring down the final term:
[tex]\[
15x^2 + 20x - 6
\][/tex]
6. Final step: Check remainder
At this stage, our result from subtraction is [tex]\( 15x^2 + 20x - 6 \)[/tex], which is lower degree than the divisor, so it becomes the remainder.
Conclusion:
The quotient is:
[tex]\[
-3x^2 - 4x + 2
\][/tex]
The remainder is:
[tex]\[
15x^2 + 20x - 6
\][/tex]
Thus, the division of the polynomials is:
[tex]\[
\frac{-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6}{x^3 + 6x^2 - 3x - 5} = -3x^2 - 4x + 2 + \frac{15x^2 + 20x - 6}{x^3 + 6x^2 - 3x - 5}
\][/tex]
Step-by-step Polynomial Long Division:
We need to divide the numerator [tex]\( -3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6 \)[/tex] by the denominator [tex]\( x^3 + 6x^2 - 3x - 5 \)[/tex].
1. Divide the first term of the numerator by the first term of the denominator:
[tex]\[
\frac{-3x^5}{x^3} = -3x^2
\][/tex]
This becomes the first term of our quotient.
2. Multiply the entire divisor by this term:
[tex]\[
(-3x^2)(x^3 + 6x^2 - 3x - 5) = -3x^5 - 18x^4 + 9x^3 + 15x^2
\][/tex]
3. Subtract the result from the original numerator:
[tex]\[
(-3x^5 - 22x^4 - 13x^3) - (-3x^5 - 18x^4 + 9x^3) = 0x^5 - 4x^4 - 22x^3
\][/tex]
Bring down the next term from the original numerator:
[tex]\[
-4x^4 - 22x^3 + 39x^2
\][/tex]
4. Repeat the process:
- Divide the first new term by the first term of the divisor:
[tex]\[
\frac{-4x^4}{x^3} = -4x
\][/tex]
- Multiply the entire divisor by this term:
[tex]\[
(-4x)(x^3 + 6x^2 - 3x - 5) = -4x^4 - 24x^3 + 12x^2 + 20x
\][/tex]
- Subtract:
[tex]\[
(-4x^4 - 22x^3 + 39x^2) - (-4x^4 - 24x^3 + 12x^2) = 0x^4 + 2x^3 + 27x^2
\][/tex]
Bring down the next term:
[tex]\[
2x^3 + 27x^2 + 14x
\][/tex]
5. Repeat again:
- Divide:
[tex]\[
\frac{2x^3}{x^3} = 2
\][/tex]
- Multiply:
[tex]\[
2(x^3 + 6x^2 - 3x - 5) = 2x^3 + 12x^2 - 6x - 10
\][/tex]
- Subtract:
[tex]\[
(2x^3 + 27x^2 + 14x) - (2x^3 + 12x^2 - 6x) = 0x^3 + 15x^2 + 20x
\][/tex]
Bring down the final term:
[tex]\[
15x^2 + 20x - 6
\][/tex]
6. Final step: Check remainder
At this stage, our result from subtraction is [tex]\( 15x^2 + 20x - 6 \)[/tex], which is lower degree than the divisor, so it becomes the remainder.
Conclusion:
The quotient is:
[tex]\[
-3x^2 - 4x + 2
\][/tex]
The remainder is:
[tex]\[
15x^2 + 20x - 6
\][/tex]
Thus, the division of the polynomials is:
[tex]\[
\frac{-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6}{x^3 + 6x^2 - 3x - 5} = -3x^2 - 4x + 2 + \frac{15x^2 + 20x - 6}{x^3 + 6x^2 - 3x - 5}
\][/tex]
Thank you for reading the article Simplify the expression tex frac 3x 5 22x 4 13x 3 39x 2 14x 6 x 3 6x 2 3x 5 tex. We hope the information provided is useful and helps you understand this topic better. Feel free to explore more helpful content on our website!
- You are operating a recreational vessel less than 39 4 feet long on federally controlled waters Which of the following is a legal sound device
- Which step should a food worker complete to prevent cross contact when preparing and serving an allergen free meal A Clean and sanitize all surfaces
- For one month Siera calculated her hometown s average high temperature in degrees Fahrenheit She wants to convert that temperature from degrees Fahrenheit to degrees
Rewritten by : Jeany