Thank you for visiting Some sources report that the weights of full term newborn babies in a certain town have a mean of 99 pounds and a standard deviation. This page is designed to guide you through key points and clear explanations related to the topic at hand. We aim to make your learning experience smooth, insightful, and informative. Dive in and discover the answers you're looking for!
Answer :
To address this question, let's first understand the concept of normal distribution and standard deviation. When data follows a normal distribution, we can determine probabilities using the properties of that distribution.
Part (a): Probability for One Newborn Baby
Understanding the Question:
- The mean weight of newborn babies is given as [tex]\mu = 99[/tex] pounds.
- The standard deviation is [tex]\sigma = 1.2[/tex] pounds.
- We need to find the probability that a baby's weight is between 97.8 and 100.2 pounds. This range represents one standard deviation from the mean.
Using the Empirical Rule:
- According to the empirical rule (68-95-99.7 rule) for normal distribution:
- Approximately 68% of data within a normal distribution falls within one standard deviation from the mean.
- Thus, the probability that one newborn baby's weight will be within 1.2 pounds of the mean is about 68%.
- According to the empirical rule (68-95-99.7 rule) for normal distribution:
Part (b): Probability for the Average of Nine Babies
Understanding the New Scenario:
- We now consider the average weight of nine newborn babies.
Central Limit Theorem (CLT) Application:
- According to the Central Limit Theorem, the distribution of the sample mean will be normally distributed with:
- Mean ([tex]\mu_{\text{sample}}[/tex]) equal to the population mean, [tex]\mu = 99[/tex] pounds.
- Standard deviation ([tex]\sigma_{\text{sample}}[/tex]) equal to the population standard deviation divided by the square root of the sample size. Thus, [tex]\sigma_{\text{sample}} = \frac{1.2}{\sqrt{9}} = 0.4[/tex] pounds.
- According to the Central Limit Theorem, the distribution of the sample mean will be normally distributed with:
Calculating the Probability:
- We need to find the probability that the average weight of these nine babies is between 97.8 and 100.2 pounds.
- Using the empirical rule for one standard deviation again for the sample mean:
- The probability remains about 68% that the average weight falls within this range due to the sample size.
Part (c): Difference Between (a) and (b)
Nature of the Data: Individual vs. Sample Average:
- Part (a) deals with the weight of a single baby, while Part (b) deals with the average weight of nine babies.
Impact of Sample Size:
- In Part (b), the variability (or standard deviation) of the average is smaller due to the larger sample size (sample size = 9) by a factor of [tex]\sqrt{n}[/tex].
Conceptual Understanding:
- The reduction in variability due to averaging is why even with a smaller standard deviation (0.4 pounds) in Part (b), the probability of staying within 1.2 pounds (or 3 standard deviations in the context of the sample distribution) remains significant.
These concepts illustrate key principles of probability and statistics, such as normal distribution, the empirical rule, and the central limit theorem, all of which provide tools for understanding variations and patterns in data.
Thank you for reading the article Some sources report that the weights of full term newborn babies in a certain town have a mean of 99 pounds and a standard deviation. We hope the information provided is useful and helps you understand this topic better. Feel free to explore more helpful content on our website!
- You are operating a recreational vessel less than 39 4 feet long on federally controlled waters Which of the following is a legal sound device
- Which step should a food worker complete to prevent cross contact when preparing and serving an allergen free meal A Clean and sanitize all surfaces
- For one month Siera calculated her hometown s average high temperature in degrees Fahrenheit She wants to convert that temperature from degrees Fahrenheit to degrees
Rewritten by : Jeany