Thank you for visiting What is the reduced radical form of each expression 19 tex left 3 x frac 1 2 right left 4 x frac 3 3 right. This page is designed to guide you through key points and clear explanations related to the topic at hand. We aim to make your learning experience smooth, insightful, and informative. Dive in and discover the answers you're looking for!
Answer :
Sure! Let's go through each expression and write out the step-by-step simplified forms for each of them.
### Simplifying the Expressions:
1. Expression 19: [tex]\( (3 x^{\frac{1}{2}})(4 x^{\frac{3}{3}}) \)[/tex]
- Simplify the exponents: [tex]\( x^{\frac{3}{3}} = x^1 = x \)[/tex].
- Combine powers: [tex]\( x^{\frac{1}{2}} \cdot x^1 = x^{\frac{1}{2} + 1} = x^{\frac{3}{2}} \)[/tex].
- Multiply the coefficients: [tex]\( 3 \cdot 4 = 12 \)[/tex].
- Final expression: [tex]\( 12x^{\frac{3}{2}} \)[/tex].
2. Expression 20: [tex]\( 2 b^{\frac{1}{2}}(3 b^{\frac{1}{2}} c^{\frac{1}{3}})^2 \)[/tex]
- Expand the bracket using power: [tex]\( (3 b^{\frac{1}{2}} c^{\frac{1}{3}})^2 = 9 b^1 c^{\frac{2}{3}} \)[/tex].
- Multiply with [tex]\( 2 b^{\frac{1}{2}} \)[/tex]:
- Combine the powers of [tex]\( b \)[/tex]: [tex]\( b^{\frac{1}{2} + 1} = b^{\frac{3}{2}} \)[/tex].
- Coefficients multiply: [tex]\( 2 \cdot 9 = 18 \)[/tex].
- Final expression: [tex]\( 18b^{\frac{3}{2}}c^{\frac{2}{3}} \)[/tex].
3. Expression 21: [tex]\( \left(x^{\frac{1}{2}} \cdot x^{\frac{3}{12}}\right)^4 \div x^{\frac{2}{3}} \)[/tex]
- Simplify inside the power: [tex]\( x^{\frac{1}{2} + \frac{1}{4}} = x^{\frac{3}{4}} \)[/tex].
- Apply the exponent: [tex]\( (x^{\frac{3}{4}})^4 = x^3 \)[/tex].
- Divide by [tex]\( x^{\frac{2}{3}} \)[/tex]: [tex]\( x^{3 - \frac{2}{3}} = x^{\frac{7}{3}} \)[/tex].
- Final expression: [tex]\( x^{\frac{7}{3}} \)[/tex].
4. Expression 22: [tex]\( \left(\frac{16 c^{14}}{81 d^{18}}\right)^{\frac{1}{2}} \)[/tex]
- Take the square root:
- [tex]\( \sqrt{16} = 4 \)[/tex]
- [tex]\( \sqrt{81} = 9 \)[/tex]
- [tex]\( \sqrt{c^{14}} = c^7 \)[/tex]
- [tex]\( \sqrt{d^{18}} = d^9 \)[/tex]
- Final expression: [tex]\( \frac{4 c^7}{9 d^9} \)[/tex].
5. Expression 23: [tex]\( \sqrt[3]{250 y^2 z^4} \)[/tex]
- Break down the cube root:
- [tex]\( 250 = 125 \cdot 2 = 5^3 \cdot 2 \)[/tex]
- [tex]\( \sqrt[3]{5^3 \cdot 2 \cdot y^2 \cdot z^4} = 5 \sqrt[3]{2 y^2 z^4} \)[/tex]
- Simplify [tex]\( z^4 \)[/tex]: [tex]\( \sqrt[3]{z^4} = z \cdot \sqrt[3]{z} \)[/tex]
- Final expression: [tex]\( 5 \cdot \sqrt[3]{2 y^2 z} \)[/tex].
These are the reduced radical forms for the first few given expressions. If you need the rest simplified, let me know, and I'll be happy to continue with them!
### Simplifying the Expressions:
1. Expression 19: [tex]\( (3 x^{\frac{1}{2}})(4 x^{\frac{3}{3}}) \)[/tex]
- Simplify the exponents: [tex]\( x^{\frac{3}{3}} = x^1 = x \)[/tex].
- Combine powers: [tex]\( x^{\frac{1}{2}} \cdot x^1 = x^{\frac{1}{2} + 1} = x^{\frac{3}{2}} \)[/tex].
- Multiply the coefficients: [tex]\( 3 \cdot 4 = 12 \)[/tex].
- Final expression: [tex]\( 12x^{\frac{3}{2}} \)[/tex].
2. Expression 20: [tex]\( 2 b^{\frac{1}{2}}(3 b^{\frac{1}{2}} c^{\frac{1}{3}})^2 \)[/tex]
- Expand the bracket using power: [tex]\( (3 b^{\frac{1}{2}} c^{\frac{1}{3}})^2 = 9 b^1 c^{\frac{2}{3}} \)[/tex].
- Multiply with [tex]\( 2 b^{\frac{1}{2}} \)[/tex]:
- Combine the powers of [tex]\( b \)[/tex]: [tex]\( b^{\frac{1}{2} + 1} = b^{\frac{3}{2}} \)[/tex].
- Coefficients multiply: [tex]\( 2 \cdot 9 = 18 \)[/tex].
- Final expression: [tex]\( 18b^{\frac{3}{2}}c^{\frac{2}{3}} \)[/tex].
3. Expression 21: [tex]\( \left(x^{\frac{1}{2}} \cdot x^{\frac{3}{12}}\right)^4 \div x^{\frac{2}{3}} \)[/tex]
- Simplify inside the power: [tex]\( x^{\frac{1}{2} + \frac{1}{4}} = x^{\frac{3}{4}} \)[/tex].
- Apply the exponent: [tex]\( (x^{\frac{3}{4}})^4 = x^3 \)[/tex].
- Divide by [tex]\( x^{\frac{2}{3}} \)[/tex]: [tex]\( x^{3 - \frac{2}{3}} = x^{\frac{7}{3}} \)[/tex].
- Final expression: [tex]\( x^{\frac{7}{3}} \)[/tex].
4. Expression 22: [tex]\( \left(\frac{16 c^{14}}{81 d^{18}}\right)^{\frac{1}{2}} \)[/tex]
- Take the square root:
- [tex]\( \sqrt{16} = 4 \)[/tex]
- [tex]\( \sqrt{81} = 9 \)[/tex]
- [tex]\( \sqrt{c^{14}} = c^7 \)[/tex]
- [tex]\( \sqrt{d^{18}} = d^9 \)[/tex]
- Final expression: [tex]\( \frac{4 c^7}{9 d^9} \)[/tex].
5. Expression 23: [tex]\( \sqrt[3]{250 y^2 z^4} \)[/tex]
- Break down the cube root:
- [tex]\( 250 = 125 \cdot 2 = 5^3 \cdot 2 \)[/tex]
- [tex]\( \sqrt[3]{5^3 \cdot 2 \cdot y^2 \cdot z^4} = 5 \sqrt[3]{2 y^2 z^4} \)[/tex]
- Simplify [tex]\( z^4 \)[/tex]: [tex]\( \sqrt[3]{z^4} = z \cdot \sqrt[3]{z} \)[/tex]
- Final expression: [tex]\( 5 \cdot \sqrt[3]{2 y^2 z} \)[/tex].
These are the reduced radical forms for the first few given expressions. If you need the rest simplified, let me know, and I'll be happy to continue with them!
Thank you for reading the article What is the reduced radical form of each expression 19 tex left 3 x frac 1 2 right left 4 x frac 3 3 right. We hope the information provided is useful and helps you understand this topic better. Feel free to explore more helpful content on our website!
- You are operating a recreational vessel less than 39 4 feet long on federally controlled waters Which of the following is a legal sound device
- Which step should a food worker complete to prevent cross contact when preparing and serving an allergen free meal A Clean and sanitize all surfaces
- For one month Siera calculated her hometown s average high temperature in degrees Fahrenheit She wants to convert that temperature from degrees Fahrenheit to degrees
Rewritten by : Jeany