Thank you for visiting Divide using long division tex frac 3x 5 22x 4 13x 3 39x 2 14x 6 x 3 6x 2 3x 5 tex Show work. This page is designed to guide you through key points and clear explanations related to the topic at hand. We aim to make your learning experience smooth, insightful, and informative. Dive in and discover the answers you're looking for!
Answer :
To solve the problem of dividing [tex]\((-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6)\)[/tex] by [tex]\((x^3 + 6x^2 - 3x - 5)\)[/tex] using long division, we follow step-by-step:
1. Set up the division:
Place the dividend [tex]\((-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6)\)[/tex] under the division symbol and the divisor [tex]\((x^3 + 6x^2 - 3x - 5)\)[/tex] outside.
2. Divide the leading term:
Divide the leading term of the dividend [tex]\(-3x^5\)[/tex] by the leading term of the divisor [tex]\(x^3\)[/tex]:
[tex]\[
\frac{-3x^5}{x^3} = -3x^2
\][/tex]
This is the first term of the quotient.
3. Multiply and subtract:
Multiply the entire divisor by [tex]\(-3x^2\)[/tex]:
[tex]\[
(-3x^2)(x^3 + 6x^2 - 3x - 5) = -3x^5 - 18x^4 + 9x^3 + 15x^2
\][/tex]
Subtract this result from the current dividend:
[tex]\[
(-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6) - (-3x^5 - 18x^4 + 9x^3 + 15x^2)
\][/tex]
This gives:
[tex]\[
0x^5 - 4x^4 - 22x^3 + 24x^2 + 14x - 6
\][/tex]
4. Repeat the process:
Divide [tex]\(-4x^4\)[/tex] by [tex]\(x^3\)[/tex]:
[tex]\[
\frac{-4x^4}{x^3} = -4x
\][/tex]
This is the next term of the quotient.
Multiply the entire divisor by [tex]\(-4x\)[/tex]:
[tex]\[
(-4x)(x^3 + 6x^2 - 3x - 5) = -4x^4 - 24x^3 + 12x^2 + 20x
\][/tex]
Subtract:
[tex]\[
(-4x^4 - 22x^3 + 24x^2 + 14x - 6) - (-4x^4 - 24x^3 + 12x^2 + 20x)
\][/tex]
This gives:
[tex]\[
0x^4 + 2x^3 + 12x^2 - 6x - 6
\][/tex]
5. Continue dividing:
Divide [tex]\(2x^3\)[/tex] by [tex]\(x^3\)[/tex]:
[tex]\[
\frac{2x^3}{x^3} = 2
\][/tex]
This is the last term of the quotient.
Multiply the entire divisor by [tex]\(2\)[/tex]:
[tex]\[
(2)(x^3 + 6x^2 - 3x - 5) = 2x^3 + 12x^2 - 6x - 10
\][/tex]
Subtract:
[tex]\[
(2x^3 + 12x^2 - 6x - 6) - (2x^3 + 12x^2 - 6x - 10)
\][/tex]
This gives:
[tex]\[
0x^3 + 0x^2 + 0x + 4
\][/tex]
6. Conclusion:
The division is complete. The quotient is [tex]\(-3x^2 - 4x + 2\)[/tex] and the remainder is [tex]\(4\)[/tex].
So, the final answer is:
[tex]\[
\text{Quotient: } -3x^2 - 4x + 2, \quad \text{Remainder: } 4
\][/tex]
This can be written as:
[tex]\[
\frac{-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6}{x^3 + 6x^2 - 3x - 5} = -3x^2 - 4x + 2 + \frac{4}{x^3 + 6x^2 - 3x - 5}
\][/tex]
1. Set up the division:
Place the dividend [tex]\((-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6)\)[/tex] under the division symbol and the divisor [tex]\((x^3 + 6x^2 - 3x - 5)\)[/tex] outside.
2. Divide the leading term:
Divide the leading term of the dividend [tex]\(-3x^5\)[/tex] by the leading term of the divisor [tex]\(x^3\)[/tex]:
[tex]\[
\frac{-3x^5}{x^3} = -3x^2
\][/tex]
This is the first term of the quotient.
3. Multiply and subtract:
Multiply the entire divisor by [tex]\(-3x^2\)[/tex]:
[tex]\[
(-3x^2)(x^3 + 6x^2 - 3x - 5) = -3x^5 - 18x^4 + 9x^3 + 15x^2
\][/tex]
Subtract this result from the current dividend:
[tex]\[
(-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6) - (-3x^5 - 18x^4 + 9x^3 + 15x^2)
\][/tex]
This gives:
[tex]\[
0x^5 - 4x^4 - 22x^3 + 24x^2 + 14x - 6
\][/tex]
4. Repeat the process:
Divide [tex]\(-4x^4\)[/tex] by [tex]\(x^3\)[/tex]:
[tex]\[
\frac{-4x^4}{x^3} = -4x
\][/tex]
This is the next term of the quotient.
Multiply the entire divisor by [tex]\(-4x\)[/tex]:
[tex]\[
(-4x)(x^3 + 6x^2 - 3x - 5) = -4x^4 - 24x^3 + 12x^2 + 20x
\][/tex]
Subtract:
[tex]\[
(-4x^4 - 22x^3 + 24x^2 + 14x - 6) - (-4x^4 - 24x^3 + 12x^2 + 20x)
\][/tex]
This gives:
[tex]\[
0x^4 + 2x^3 + 12x^2 - 6x - 6
\][/tex]
5. Continue dividing:
Divide [tex]\(2x^3\)[/tex] by [tex]\(x^3\)[/tex]:
[tex]\[
\frac{2x^3}{x^3} = 2
\][/tex]
This is the last term of the quotient.
Multiply the entire divisor by [tex]\(2\)[/tex]:
[tex]\[
(2)(x^3 + 6x^2 - 3x - 5) = 2x^3 + 12x^2 - 6x - 10
\][/tex]
Subtract:
[tex]\[
(2x^3 + 12x^2 - 6x - 6) - (2x^3 + 12x^2 - 6x - 10)
\][/tex]
This gives:
[tex]\[
0x^3 + 0x^2 + 0x + 4
\][/tex]
6. Conclusion:
The division is complete. The quotient is [tex]\(-3x^2 - 4x + 2\)[/tex] and the remainder is [tex]\(4\)[/tex].
So, the final answer is:
[tex]\[
\text{Quotient: } -3x^2 - 4x + 2, \quad \text{Remainder: } 4
\][/tex]
This can be written as:
[tex]\[
\frac{-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6}{x^3 + 6x^2 - 3x - 5} = -3x^2 - 4x + 2 + \frac{4}{x^3 + 6x^2 - 3x - 5}
\][/tex]
Thank you for reading the article Divide using long division tex frac 3x 5 22x 4 13x 3 39x 2 14x 6 x 3 6x 2 3x 5 tex Show work. We hope the information provided is useful and helps you understand this topic better. Feel free to explore more helpful content on our website!
- You are operating a recreational vessel less than 39 4 feet long on federally controlled waters Which of the following is a legal sound device
- Which step should a food worker complete to prevent cross contact when preparing and serving an allergen free meal A Clean and sanitize all surfaces
- For one month Siera calculated her hometown s average high temperature in degrees Fahrenheit She wants to convert that temperature from degrees Fahrenheit to degrees
Rewritten by : Jeany