High School

Thank you for visiting Divide using long division tex frac 3x 5 22x 4 13x 3 39x 2 14x 6 x 3 6x 2 3x 5 tex. This page is designed to guide you through key points and clear explanations related to the topic at hand. We aim to make your learning experience smooth, insightful, and informative. Dive in and discover the answers you're looking for!

Divide using long division:

[tex]\[ \frac{-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6}{x^3 + 6x^2 - 3x - 5} \][/tex]

Answer :

We wish to divide
[tex]$$
-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6
$$[/tex]
by
[tex]$$
x^3 + 6x^2 - 3x - 5.
$$[/tex]

The goal is to express the division as
[tex]$$
\frac{-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6}{x^3 + 6x^2 - 3x - 5} = Q(x) + \frac{R(x)}{x^3 + 6x^2 - 3x - 5},
$$[/tex]
where [tex]$Q(x)$[/tex] is the quotient and [tex]$R(x)$[/tex] is the remainder with a degree less than [tex]$3$[/tex].

Let’s perform the long division step by step.

–––––– Step 1: Divide the leading terms

The leading term of the dividend is [tex]$-3x^5$[/tex] and that of the divisor is [tex]$x^3$[/tex]. Dividing these gives:
[tex]$$
\frac{-3x^5}{x^3} = -3x^2.
$$[/tex]
So, the first term of the quotient is [tex]$-3x^2$[/tex].

–––––– Step 2: Multiply and subtract

Multiply the entire divisor by [tex]$-3x^2$[/tex]:
[tex]$$
-3x^2(x^3 + 6x^2 - 3x - 5) = -3x^5 - 18x^4 + 9x^3 + 15x^2.
$$[/tex]

Subtract this from the original dividend:
[tex]\[
\begin{array}{rrrrrr}
& -3x^5 & -22x^4 & -13x^3 & +39x^2 & +14x -6\\[5mm]
-&( -3x^5 & -18x^4 & +9x^3 & +15x^2 & \quad )\\ \hline
& \quad 0 & -4x^4 & -22x^3 & +24x^2 & +14x -6\\
\end{array}
\][/tex]
After subtraction, the new polynomial is:
[tex]$$
-4x^4 - 22x^3 + 24x^2 + 14x - 6.
$$[/tex]

–––––– Step 3: Repeat with the new polynomial

Now, divide the leading term of the new polynomial ([tex]$-4x^4$[/tex]) by the leading term of the divisor ([tex]$x^3$[/tex]):
[tex]$$
\frac{-4x^4}{x^3} = -4x.
$$[/tex]
This gives the next term of the quotient: [tex]$-4x$[/tex].

Multiply the divisor by [tex]$-4x$[/tex]:
[tex]$$
-4x(x^3 + 6x^2 - 3x - 5) = -4x^4 - 24x^3 + 12x^2 + 20x.
$$[/tex]

Subtract this from the current polynomial:
[tex]\[
\begin{array}{rrrrrr}
& -4x^4 & -22x^3 & +24x^2 & +14x & -6 \\[5mm]
-&( -4x^4 & -24x^3 & +12x^2 & +20x & \quad )\\ \hline
& \quad 0 & \;2x^3 & +12x^2 & -6x & -6\\
\end{array}
\][/tex]
The result is:
[tex]$$
2x^3 + 12x^2 - 6x - 6.
$$[/tex]

–––––– Step 4: One more division step

Now, divide the leading term of the new polynomial ([tex]$2x^3$[/tex]) by the leading term of the divisor ([tex]$x^3$[/tex]):
[tex]$$
\frac{2x^3}{x^3} = 2.
$$[/tex]
So, the next term of the quotient is [tex]$2$[/tex].

Multiply the divisor by [tex]$2$[/tex]:
[tex]$$
2(x^3 + 6x^2 - 3x - 5) = 2x^3 + 12x^2 - 6x - 10.
$$[/tex]

Subtract to find the remainder:
[tex]\[
\begin{array}{rrrrrr}
& 2x^3 & +12x^2 & -6x & -6 \\[5mm]
-&( 2x^3 & +12x^2 & -6x & -10)\\ \hline
& \quad 0 & \quad 0 & \;0 & \;4\\
\end{array}
\][/tex]
Thus, the remainder is [tex]$4$[/tex].

–––––– Final Result

The quotient is
[tex]$$
Q(x) = -3x^2 - 4x + 2,
$$[/tex]
and the remainder is
[tex]$$
R(x) = 4.
$$[/tex]

We can now express the original division as:
[tex]$$
\frac{-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6}{x^3 + 6x^2 - 3x - 5} = -3x^2 - 4x + 2 + \frac{4}{x^3 + 6x^2 - 3x - 5}.
$$[/tex]

This completes the long division step by step.

Thank you for reading the article Divide using long division tex frac 3x 5 22x 4 13x 3 39x 2 14x 6 x 3 6x 2 3x 5 tex. We hope the information provided is useful and helps you understand this topic better. Feel free to explore more helpful content on our website!

Rewritten by : Jeany