Thank you for visiting An object moves along the tex x tex axis according to the equation tex x 2 75 t 2 2 00 t 3 00 tex. This page is designed to guide you through key points and clear explanations related to the topic at hand. We aim to make your learning experience smooth, insightful, and informative. Dive in and discover the answers you're looking for!
Answer :
We are given the position function
[tex]$$
x(t) = 2.75t^2 - 2.00t + 3.00,
$$[/tex]
with [tex]$x$[/tex] in meters and [tex]$t$[/tex] in seconds.
Below are the steps to find the required quantities.
────────────────────────
(a) Average Speed between [tex]$t = 1.70\text{ s}$[/tex] and [tex]$t = 3.40\text{ s}$[/tex]
1. First, compute the positions at the two times:
[tex]\[
x(1.70) = 2.75(1.70)^2 - 2.00(1.70) + 3.00 = 7.5475\text{ m},
\][/tex]
[tex]\[
x(3.40) = 2.75(3.40)^2 - 2.00(3.40) + 3.00 = 27.99\text{ m}.
\][/tex]
2. The displacement is
[tex]\[
\Delta x = x(3.40) - x(1.70) = 27.99 - 7.5475 = 20.4425\text{ m}.
\][/tex]
3. The time interval is
[tex]\[
\Delta t = 3.40 - 1.70 = 1.70\text{ s}.
\][/tex]
4. Therefore, the average speed is
[tex]\[
v_{\text{avg}} = \frac{\Delta x}{\Delta t} \approx \frac{20.4425}{1.70} \approx 12.025\text{ m/s}.
\][/tex]
────────────────────────
(b) Instantaneous Speed at Specific Times
1. The instantaneous velocity is the derivative of [tex]$x(t)$[/tex]. Differentiating, we get
[tex]\[
v(t) = \frac{dx}{dt} = 2(2.75)t - 2.00 = 5.5t - 2.00.
\][/tex]
2. At [tex]$t = 1.70\text{ s}$[/tex]:
[tex]\[
v(1.70) = 5.5(1.70) - 2.00 = 9.35 - 2.00 = 7.35\text{ m/s}.
\][/tex]
3. At [tex]$t = 3.40\text{ s}$[/tex]:
[tex]\[
v(3.40) = 5.5(3.40) - 2.00 = 18.70 - 2.00 = 16.70\text{ m/s}.
\][/tex]
────────────────────────
(c) Average Acceleration between [tex]$t = 1.70\text{ s}$[/tex] and [tex]$t = 3.40\text{ s}$[/tex]
1. The average acceleration is given by
[tex]\[
a_{\text{avg}} = \frac{v(3.40) - v(1.70)}{3.40 - 1.70}.
\][/tex]
2. Substituting the computed velocities:
[tex]\[
a_{\text{avg}} = \frac{16.70 - 7.35}{1.70} = \frac{9.35}{1.70} \approx 5.5\text{ m/s}^2.
\][/tex]
────────────────────────
(d) Instantaneous Acceleration at Specific Times
1. The instantaneous acceleration is the derivative of the velocity function. Since
[tex]\[
v(t) = 5.5t - 2.00,
\][/tex]
its derivative is
[tex]\[
a(t) = \frac{dv}{dt} = 5.5.
\][/tex]
2. Hence, the instantaneous acceleration at any time is
[tex]\[
a(1.70) = a(3.40) = 5.5\text{ m/s}^2.
\][/tex]
────────────────────────
(e) Time When the Object is at Rest
1. The object is at rest when [tex]$v(t) = 0$[/tex]. Set up the equation:
[tex]\[
5.5t - 2.00 = 0.
\][/tex]
2. Solve for [tex]$t$[/tex]:
[tex]\[
5.5t = 2.00 \quad \Longrightarrow \quad t = \frac{2.00}{5.5} \approx 0.3636\text{ s}.
\][/tex]
────────────────────────
Summary of Results:
- (a) Average speed between [tex]$t=1.70\text{ s}$[/tex] and [tex]$t=3.40\text{ s}$[/tex]: [tex]$\boxed{12.025\ \text{m/s}}$[/tex].
- (b) Instantaneous speed at [tex]$t=1.70\text{ s}$[/tex]: [tex]$\boxed{7.35\ \text{m/s}}$[/tex]; at [tex]$t=3.40\text{ s}$[/tex]: [tex]$\boxed{16.70\ \text{m/s}}$[/tex].
- (c) Average acceleration between [tex]$t=1.70\text{ s}$[/tex] and [tex]$t=3.40\text{ s}$[/tex]: [tex]$\boxed{5.5\ \text{m/s}^2}$[/tex].
- (d) Instantaneous acceleration at both [tex]$t=1.70\text{ s}$[/tex] and [tex]$t=3.40\text{ s}$[/tex]: [tex]$\boxed{5.5\ \text{m/s}^2}$[/tex].
- (e) The object is at rest at [tex]$t \approx \boxed{0.3636\ \text{s}}$[/tex].
[tex]$$
x(t) = 2.75t^2 - 2.00t + 3.00,
$$[/tex]
with [tex]$x$[/tex] in meters and [tex]$t$[/tex] in seconds.
Below are the steps to find the required quantities.
────────────────────────
(a) Average Speed between [tex]$t = 1.70\text{ s}$[/tex] and [tex]$t = 3.40\text{ s}$[/tex]
1. First, compute the positions at the two times:
[tex]\[
x(1.70) = 2.75(1.70)^2 - 2.00(1.70) + 3.00 = 7.5475\text{ m},
\][/tex]
[tex]\[
x(3.40) = 2.75(3.40)^2 - 2.00(3.40) + 3.00 = 27.99\text{ m}.
\][/tex]
2. The displacement is
[tex]\[
\Delta x = x(3.40) - x(1.70) = 27.99 - 7.5475 = 20.4425\text{ m}.
\][/tex]
3. The time interval is
[tex]\[
\Delta t = 3.40 - 1.70 = 1.70\text{ s}.
\][/tex]
4. Therefore, the average speed is
[tex]\[
v_{\text{avg}} = \frac{\Delta x}{\Delta t} \approx \frac{20.4425}{1.70} \approx 12.025\text{ m/s}.
\][/tex]
────────────────────────
(b) Instantaneous Speed at Specific Times
1. The instantaneous velocity is the derivative of [tex]$x(t)$[/tex]. Differentiating, we get
[tex]\[
v(t) = \frac{dx}{dt} = 2(2.75)t - 2.00 = 5.5t - 2.00.
\][/tex]
2. At [tex]$t = 1.70\text{ s}$[/tex]:
[tex]\[
v(1.70) = 5.5(1.70) - 2.00 = 9.35 - 2.00 = 7.35\text{ m/s}.
\][/tex]
3. At [tex]$t = 3.40\text{ s}$[/tex]:
[tex]\[
v(3.40) = 5.5(3.40) - 2.00 = 18.70 - 2.00 = 16.70\text{ m/s}.
\][/tex]
────────────────────────
(c) Average Acceleration between [tex]$t = 1.70\text{ s}$[/tex] and [tex]$t = 3.40\text{ s}$[/tex]
1. The average acceleration is given by
[tex]\[
a_{\text{avg}} = \frac{v(3.40) - v(1.70)}{3.40 - 1.70}.
\][/tex]
2. Substituting the computed velocities:
[tex]\[
a_{\text{avg}} = \frac{16.70 - 7.35}{1.70} = \frac{9.35}{1.70} \approx 5.5\text{ m/s}^2.
\][/tex]
────────────────────────
(d) Instantaneous Acceleration at Specific Times
1. The instantaneous acceleration is the derivative of the velocity function. Since
[tex]\[
v(t) = 5.5t - 2.00,
\][/tex]
its derivative is
[tex]\[
a(t) = \frac{dv}{dt} = 5.5.
\][/tex]
2. Hence, the instantaneous acceleration at any time is
[tex]\[
a(1.70) = a(3.40) = 5.5\text{ m/s}^2.
\][/tex]
────────────────────────
(e) Time When the Object is at Rest
1. The object is at rest when [tex]$v(t) = 0$[/tex]. Set up the equation:
[tex]\[
5.5t - 2.00 = 0.
\][/tex]
2. Solve for [tex]$t$[/tex]:
[tex]\[
5.5t = 2.00 \quad \Longrightarrow \quad t = \frac{2.00}{5.5} \approx 0.3636\text{ s}.
\][/tex]
────────────────────────
Summary of Results:
- (a) Average speed between [tex]$t=1.70\text{ s}$[/tex] and [tex]$t=3.40\text{ s}$[/tex]: [tex]$\boxed{12.025\ \text{m/s}}$[/tex].
- (b) Instantaneous speed at [tex]$t=1.70\text{ s}$[/tex]: [tex]$\boxed{7.35\ \text{m/s}}$[/tex]; at [tex]$t=3.40\text{ s}$[/tex]: [tex]$\boxed{16.70\ \text{m/s}}$[/tex].
- (c) Average acceleration between [tex]$t=1.70\text{ s}$[/tex] and [tex]$t=3.40\text{ s}$[/tex]: [tex]$\boxed{5.5\ \text{m/s}^2}$[/tex].
- (d) Instantaneous acceleration at both [tex]$t=1.70\text{ s}$[/tex] and [tex]$t=3.40\text{ s}$[/tex]: [tex]$\boxed{5.5\ \text{m/s}^2}$[/tex].
- (e) The object is at rest at [tex]$t \approx \boxed{0.3636\ \text{s}}$[/tex].
Thank you for reading the article An object moves along the tex x tex axis according to the equation tex x 2 75 t 2 2 00 t 3 00 tex. We hope the information provided is useful and helps you understand this topic better. Feel free to explore more helpful content on our website!
- You are operating a recreational vessel less than 39 4 feet long on federally controlled waters Which of the following is a legal sound device
- Which step should a food worker complete to prevent cross contact when preparing and serving an allergen free meal A Clean and sanitize all surfaces
- For one month Siera calculated her hometown s average high temperature in degrees Fahrenheit She wants to convert that temperature from degrees Fahrenheit to degrees
Rewritten by : Jeany