Thank you for visiting Divide using long division tex frac 3x 5 22x 4 13x 3 39x 2 14x 6 x 3 6x 2 3x 5 tex Show your. This page is designed to guide you through key points and clear explanations related to the topic at hand. We aim to make your learning experience smooth, insightful, and informative. Dive in and discover the answers you're looking for!
Answer :
Sure, let's work through the polynomial division step-by-step using long division. We are dividing:
[tex]\[
-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6 \quad \text{by} \quad x^3 + 6x^2 - 3x - 5
\][/tex]
Step 1: Divide the leading terms
First, divide the leading term of the dividend [tex]\(-3x^5\)[/tex] by the leading term of the divisor [tex]\(x^3\)[/tex]:
[tex]\[
\frac{-3x^5}{x^3} = -3x^2
\][/tex]
Step 2: Multiply and subtract
Multiply the entire divisor by [tex]\(-3x^2\)[/tex] and subtract this product from the original polynomial:
[tex]\[
(-3x^2) \cdot (x^3 + 6x^2 - 3x - 5) = -3x^5 - 18x^4 + 9x^3 + 15x^2
\][/tex]
Subtract:
[tex]\[
\big(-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6\big) - \big(-3x^5 - 18x^4 + 9x^3 + 15x^2\big)
\][/tex]
This results in:
[tex]\[
0x^5 - 4x^4 - 22x^3 + 24x^2 + 14x - 6
\][/tex]
Step 3: Repeat the process
Divide the new leading term [tex]\(-4x^4\)[/tex] by [tex]\(x^3\)[/tex]:
[tex]\[
\frac{-4x^4}{x^3} = -4x
\][/tex]
Multiply the entire divisor by [tex]\(-4x\)[/tex] and subtract this product from the current polynomial:
[tex]\[
(-4x) \cdot (x^3 + 6x^2 - 3x - 5) = -4x^4 - 24x^3 + 12x^2 + 20x
\][/tex]
Subtract:
[tex]\[
\big(-4x^4 - 22x^3 + 24x^2 + 14x - 6\big) - \big(-4x^4 - 24x^3 + 12x^2 + 20x\big)
\][/tex]
This results in:
[tex]\[
0x^4 + 2x^3 + 12x^2 - 6x - 6
\][/tex]
Step 4: Repeat the process
Divide [tex]\(2x^3\)[/tex] by [tex]\(x^3\)[/tex]:
[tex]\[
\frac{2x^3}{x^3} = 2
\][/tex]
Multiply the entire divisor by [tex]\(2\)[/tex] and subtract this product from the current polynomial:
[tex]\[
2 \cdot (x^3 + 6x^2 - 3x - 5) = 2x^3 + 12x^2 - 6x - 10
\][/tex]
Subtract:
[tex]\[
\big(2x^3 + 12x^2 - 6x - 6\big) - \big(2x^3 + 12x^2 - 6x - 10\big)
\][/tex]
This results in:
[tex]\[
0x^3 + 0x^2 + 0x + 4
\][/tex]
Conclusion
The quotient is [tex]\(-3x^2 - 4x + 2\)[/tex] and the remainder is [tex]\(4\)[/tex]. Thus, the division can be written as:
[tex]\[
\frac{-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6}{x^3 + 6x^2 - 3x - 5} = -3x^2 - 4x + 2 + \frac{4}{x^3 + 6x^2 - 3x - 5}
\][/tex]
[tex]\[
-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6 \quad \text{by} \quad x^3 + 6x^2 - 3x - 5
\][/tex]
Step 1: Divide the leading terms
First, divide the leading term of the dividend [tex]\(-3x^5\)[/tex] by the leading term of the divisor [tex]\(x^3\)[/tex]:
[tex]\[
\frac{-3x^5}{x^3} = -3x^2
\][/tex]
Step 2: Multiply and subtract
Multiply the entire divisor by [tex]\(-3x^2\)[/tex] and subtract this product from the original polynomial:
[tex]\[
(-3x^2) \cdot (x^3 + 6x^2 - 3x - 5) = -3x^5 - 18x^4 + 9x^3 + 15x^2
\][/tex]
Subtract:
[tex]\[
\big(-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6\big) - \big(-3x^5 - 18x^4 + 9x^3 + 15x^2\big)
\][/tex]
This results in:
[tex]\[
0x^5 - 4x^4 - 22x^3 + 24x^2 + 14x - 6
\][/tex]
Step 3: Repeat the process
Divide the new leading term [tex]\(-4x^4\)[/tex] by [tex]\(x^3\)[/tex]:
[tex]\[
\frac{-4x^4}{x^3} = -4x
\][/tex]
Multiply the entire divisor by [tex]\(-4x\)[/tex] and subtract this product from the current polynomial:
[tex]\[
(-4x) \cdot (x^3 + 6x^2 - 3x - 5) = -4x^4 - 24x^3 + 12x^2 + 20x
\][/tex]
Subtract:
[tex]\[
\big(-4x^4 - 22x^3 + 24x^2 + 14x - 6\big) - \big(-4x^4 - 24x^3 + 12x^2 + 20x\big)
\][/tex]
This results in:
[tex]\[
0x^4 + 2x^3 + 12x^2 - 6x - 6
\][/tex]
Step 4: Repeat the process
Divide [tex]\(2x^3\)[/tex] by [tex]\(x^3\)[/tex]:
[tex]\[
\frac{2x^3}{x^3} = 2
\][/tex]
Multiply the entire divisor by [tex]\(2\)[/tex] and subtract this product from the current polynomial:
[tex]\[
2 \cdot (x^3 + 6x^2 - 3x - 5) = 2x^3 + 12x^2 - 6x - 10
\][/tex]
Subtract:
[tex]\[
\big(2x^3 + 12x^2 - 6x - 6\big) - \big(2x^3 + 12x^2 - 6x - 10\big)
\][/tex]
This results in:
[tex]\[
0x^3 + 0x^2 + 0x + 4
\][/tex]
Conclusion
The quotient is [tex]\(-3x^2 - 4x + 2\)[/tex] and the remainder is [tex]\(4\)[/tex]. Thus, the division can be written as:
[tex]\[
\frac{-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6}{x^3 + 6x^2 - 3x - 5} = -3x^2 - 4x + 2 + \frac{4}{x^3 + 6x^2 - 3x - 5}
\][/tex]
Thank you for reading the article Divide using long division tex frac 3x 5 22x 4 13x 3 39x 2 14x 6 x 3 6x 2 3x 5 tex Show your. We hope the information provided is useful and helps you understand this topic better. Feel free to explore more helpful content on our website!
- You are operating a recreational vessel less than 39 4 feet long on federally controlled waters Which of the following is a legal sound device
- Which step should a food worker complete to prevent cross contact when preparing and serving an allergen free meal A Clean and sanitize all surfaces
- For one month Siera calculated her hometown s average high temperature in degrees Fahrenheit She wants to convert that temperature from degrees Fahrenheit to degrees
Rewritten by : Jeany