Thank you for visiting Divide using long division tex frac 3x 5 22x 4 13x 3 39x 2 14x 6 x 3 6x 2 3x 5 tex Show your. This page is designed to guide you through key points and clear explanations related to the topic at hand. We aim to make your learning experience smooth, insightful, and informative. Dive in and discover the answers you're looking for!
Answer :
To divide the polynomial [tex]\(-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6\)[/tex] by [tex]\(x^3 + 6x^2 - 3x - 5\)[/tex] using long division, we'll follow these steps:
1. Set up the division: Write the dividend [tex]\(-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6\)[/tex] and the divisor [tex]\(x^3 + 6x^2 - 3x - 5\)[/tex].
2. Divide the leading terms:
- Divide [tex]\(-3x^5\)[/tex] by [tex]\(x^3\)[/tex] to get [tex]\(-3x^2\)[/tex].
- This is the first term of our quotient.
3. Multiply and subtract:
- Multiply the entire divisor [tex]\(x^3 + 6x^2 - 3x - 5\)[/tex] by [tex]\(-3x^2\)[/tex] resulting in [tex]\(-3x^5 - 18x^4 + 9x^3 + 15x^2\)[/tex].
- Subtract this from the original polynomial:
[tex]\[
(-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6) - (-3x^5 - 18x^4 + 9x^3 + 15x^2)
= -4x^4 - 22x^3 + 24x^2 + 14x - 6
\][/tex]
4. Repeat the process:
- Divide [tex]\(-4x^4\)[/tex] by [tex]\(x^3\)[/tex] to get [tex]\(-4x\)[/tex].
- Multiply the divisor by [tex]\(-4x\)[/tex], which gives [tex]\(-4x^4 - 24x^3 + 12x^2 + 20x\)[/tex].
- Subtract from the current remainder:
[tex]\[
(-4x^4 - 22x^3 + 24x^2 + 14x - 6) - (-4x^4 - 24x^3 + 12x^2 + 20x)
= 2x^3 + 12x^2 - 6x - 6
\][/tex]
5. Continue with the next term:
- Divide [tex]\(2x^3\)[/tex] by [tex]\(x^3\)[/tex] to get [tex]\(2\)[/tex].
- Multiply the divisor by 2, resulting in [tex]\(2x^3 + 12x^2 - 6x - 10\)[/tex].
- Subtract from the remainder:
[tex]\[
(2x^3 + 12x^2 - 6x - 6) - (2x^3 + 12x^2 - 6x - 10)
= 4
\][/tex]
6. Conclusion:
- The quotient is [tex]\(-3x^2 - 4x + 2\)[/tex].
- The remainder is 4.
Therefore, the result of the division is:
[tex]\[
\text{Quotient}: -3x^2 - 4x + 2
\][/tex]
[tex]\[
\text{Remainder}: 4
\][/tex]
This means that:
[tex]\[
\frac{-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6}{x^3 + 6x^2 - 3x - 5} = -3x^2 - 4x + 2 + \frac{4}{x^3 + 6x^2 - 3x - 5}
\][/tex]
1. Set up the division: Write the dividend [tex]\(-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6\)[/tex] and the divisor [tex]\(x^3 + 6x^2 - 3x - 5\)[/tex].
2. Divide the leading terms:
- Divide [tex]\(-3x^5\)[/tex] by [tex]\(x^3\)[/tex] to get [tex]\(-3x^2\)[/tex].
- This is the first term of our quotient.
3. Multiply and subtract:
- Multiply the entire divisor [tex]\(x^3 + 6x^2 - 3x - 5\)[/tex] by [tex]\(-3x^2\)[/tex] resulting in [tex]\(-3x^5 - 18x^4 + 9x^3 + 15x^2\)[/tex].
- Subtract this from the original polynomial:
[tex]\[
(-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6) - (-3x^5 - 18x^4 + 9x^3 + 15x^2)
= -4x^4 - 22x^3 + 24x^2 + 14x - 6
\][/tex]
4. Repeat the process:
- Divide [tex]\(-4x^4\)[/tex] by [tex]\(x^3\)[/tex] to get [tex]\(-4x\)[/tex].
- Multiply the divisor by [tex]\(-4x\)[/tex], which gives [tex]\(-4x^4 - 24x^3 + 12x^2 + 20x\)[/tex].
- Subtract from the current remainder:
[tex]\[
(-4x^4 - 22x^3 + 24x^2 + 14x - 6) - (-4x^4 - 24x^3 + 12x^2 + 20x)
= 2x^3 + 12x^2 - 6x - 6
\][/tex]
5. Continue with the next term:
- Divide [tex]\(2x^3\)[/tex] by [tex]\(x^3\)[/tex] to get [tex]\(2\)[/tex].
- Multiply the divisor by 2, resulting in [tex]\(2x^3 + 12x^2 - 6x - 10\)[/tex].
- Subtract from the remainder:
[tex]\[
(2x^3 + 12x^2 - 6x - 6) - (2x^3 + 12x^2 - 6x - 10)
= 4
\][/tex]
6. Conclusion:
- The quotient is [tex]\(-3x^2 - 4x + 2\)[/tex].
- The remainder is 4.
Therefore, the result of the division is:
[tex]\[
\text{Quotient}: -3x^2 - 4x + 2
\][/tex]
[tex]\[
\text{Remainder}: 4
\][/tex]
This means that:
[tex]\[
\frac{-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6}{x^3 + 6x^2 - 3x - 5} = -3x^2 - 4x + 2 + \frac{4}{x^3 + 6x^2 - 3x - 5}
\][/tex]
Thank you for reading the article Divide using long division tex frac 3x 5 22x 4 13x 3 39x 2 14x 6 x 3 6x 2 3x 5 tex Show your. We hope the information provided is useful and helps you understand this topic better. Feel free to explore more helpful content on our website!
- You are operating a recreational vessel less than 39 4 feet long on federally controlled waters Which of the following is a legal sound device
- Which step should a food worker complete to prevent cross contact when preparing and serving an allergen free meal A Clean and sanitize all surfaces
- For one month Siera calculated her hometown s average high temperature in degrees Fahrenheit She wants to convert that temperature from degrees Fahrenheit to degrees
Rewritten by : Jeany