Thank you for visiting Divide using long division tex frac 3x 5 22x 4 13x 3 39x 2 14x 6 x 3 6x 2 3x 5 tex Show work. This page is designed to guide you through key points and clear explanations related to the topic at hand. We aim to make your learning experience smooth, insightful, and informative. Dive in and discover the answers you're looking for!
Answer :
Let's perform long division step-by-step to divide the polynomial [tex]\(-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6\)[/tex] by [tex]\(x^3 + 6x^2 - 3x - 5\)[/tex].
1. Setup the division: Write the dividend [tex]\(-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6\)[/tex] under the division bracket, and the divisor [tex]\(x^3 + 6x^2 - 3x - 5\)[/tex] outside.
2. Divide the leading terms:
- Divide the leading term of the dividend [tex]\(-3x^5\)[/tex] by the leading term of the divisor [tex]\(x^3\)[/tex].
- [tex]\(-3x^5 \div x^3 = -3x^2\)[/tex].
3. Multiply and subtract:
- Multiply the entire divisor by [tex]\(-3x^2\)[/tex]:
[tex]\[
(-3x^2)(x^3 + 6x^2 - 3x - 5) = -3x^5 - 18x^4 + 9x^3 + 15x^2.
\][/tex]
- Subtract this result from the dividend:
[tex]\[
(-3x^5 - 22x^4 - 13x^3 + 39x^2) - (-3x^5 - 18x^4 + 9x^3 + 15x^2) = -4x^4 - 22x^3 + 24x^2.
\][/tex]
4. Repeat the process:
- Divide [tex]\(-4x^4\)[/tex] by [tex]\(x^3\)[/tex]:
[tex]\(-4x^4 \div x^3 = -4x\)[/tex].
- Multiply the divisor by [tex]\(-4x\)[/tex]:
[tex]\[
(-4x)(x^3 + 6x^2 - 3x - 5) = -4x^4 - 24x^3 + 12x^2 + 20x.
\][/tex]
- Subtract from the current remainder:
[tex]\[
(-4x^4 - 22x^3 + 24x^2) - (-4x^4 - 24x^3 + 12x^2 + 20x) = 2x^3 + 12x^2 - 20x.
\][/tex]
5. Continue:
- Divide [tex]\(2x^3\)[/tex] by [tex]\(x^3\)[/tex]:
[tex]\(2x^3 \div x^3 = 2\)[/tex].
- Multiply the divisor by [tex]\(2\)[/tex]:
[tex]\[
(2)(x^3 + 6x^2 - 3x - 5) = 2x^3 + 12x^2 - 6x - 10.
\][/tex]
- Subtract from the current remainder:
[tex]\[
(2x^3 + 12x^2 - 20x) - (2x^3 + 12x^2 - 6x - 10) = -14x + 10.
\][/tex]
6. Final Remainder: The degree of the remainder [tex]\(-14x + 10\)[/tex] is less than the degree of the divisor [tex]\(x^3 + 6x^2 - 3x - 5\)[/tex], so we are done.
The quotient is [tex]\(-3x^2 - 4x + 2\)[/tex] and the remainder is [tex]\(-14x + 10\)[/tex].
Therefore, the result of the division is:
[tex]\[
\boxed{-3x^2 - 4x + 2} \quad \text{with a remainder of } \boxed{-14x + 10}
\][/tex]
1. Setup the division: Write the dividend [tex]\(-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6\)[/tex] under the division bracket, and the divisor [tex]\(x^3 + 6x^2 - 3x - 5\)[/tex] outside.
2. Divide the leading terms:
- Divide the leading term of the dividend [tex]\(-3x^5\)[/tex] by the leading term of the divisor [tex]\(x^3\)[/tex].
- [tex]\(-3x^5 \div x^3 = -3x^2\)[/tex].
3. Multiply and subtract:
- Multiply the entire divisor by [tex]\(-3x^2\)[/tex]:
[tex]\[
(-3x^2)(x^3 + 6x^2 - 3x - 5) = -3x^5 - 18x^4 + 9x^3 + 15x^2.
\][/tex]
- Subtract this result from the dividend:
[tex]\[
(-3x^5 - 22x^4 - 13x^3 + 39x^2) - (-3x^5 - 18x^4 + 9x^3 + 15x^2) = -4x^4 - 22x^3 + 24x^2.
\][/tex]
4. Repeat the process:
- Divide [tex]\(-4x^4\)[/tex] by [tex]\(x^3\)[/tex]:
[tex]\(-4x^4 \div x^3 = -4x\)[/tex].
- Multiply the divisor by [tex]\(-4x\)[/tex]:
[tex]\[
(-4x)(x^3 + 6x^2 - 3x - 5) = -4x^4 - 24x^3 + 12x^2 + 20x.
\][/tex]
- Subtract from the current remainder:
[tex]\[
(-4x^4 - 22x^3 + 24x^2) - (-4x^4 - 24x^3 + 12x^2 + 20x) = 2x^3 + 12x^2 - 20x.
\][/tex]
5. Continue:
- Divide [tex]\(2x^3\)[/tex] by [tex]\(x^3\)[/tex]:
[tex]\(2x^3 \div x^3 = 2\)[/tex].
- Multiply the divisor by [tex]\(2\)[/tex]:
[tex]\[
(2)(x^3 + 6x^2 - 3x - 5) = 2x^3 + 12x^2 - 6x - 10.
\][/tex]
- Subtract from the current remainder:
[tex]\[
(2x^3 + 12x^2 - 20x) - (2x^3 + 12x^2 - 6x - 10) = -14x + 10.
\][/tex]
6. Final Remainder: The degree of the remainder [tex]\(-14x + 10\)[/tex] is less than the degree of the divisor [tex]\(x^3 + 6x^2 - 3x - 5\)[/tex], so we are done.
The quotient is [tex]\(-3x^2 - 4x + 2\)[/tex] and the remainder is [tex]\(-14x + 10\)[/tex].
Therefore, the result of the division is:
[tex]\[
\boxed{-3x^2 - 4x + 2} \quad \text{with a remainder of } \boxed{-14x + 10}
\][/tex]
Thank you for reading the article Divide using long division tex frac 3x 5 22x 4 13x 3 39x 2 14x 6 x 3 6x 2 3x 5 tex Show work. We hope the information provided is useful and helps you understand this topic better. Feel free to explore more helpful content on our website!
- You are operating a recreational vessel less than 39 4 feet long on federally controlled waters Which of the following is a legal sound device
- Which step should a food worker complete to prevent cross contact when preparing and serving an allergen free meal A Clean and sanitize all surfaces
- For one month Siera calculated her hometown s average high temperature in degrees Fahrenheit She wants to convert that temperature from degrees Fahrenheit to degrees
Rewritten by : Jeany