Answer :

Sure, I'd be happy to guide you through the steps to calculate [tex]\( I \)[/tex] in the formula [tex]\( P = I \cdot R \)[/tex] when [tex]\( P = 625 \)[/tex] and [tex]\( R = 1.83 \)[/tex].

1. Identify the formula and the given values:
- The formula is [tex]\( P = I \cdot R \)[/tex]
- We are given [tex]\( P = 625 \)[/tex] and [tex]\( R = 1.83 \)[/tex]

2. Rearrange the formula to solve for [tex]\( I \)[/tex]:
- The goal is to find [tex]\( I \)[/tex]. To isolate [tex]\( I \)[/tex], you can divide both sides of the equation by [tex]\( R \)[/tex].
- So, [tex]\( I = \frac{P}{R} \)[/tex]

3. Substitute the given values into the rearranged formula:
- Substitute [tex]\( P = 625 \)[/tex] and [tex]\( R = 1.83 \)[/tex] into [tex]\( I = \frac{P}{R} \)[/tex]
- This gives us [tex]\( I = \frac{625}{1.83} \)[/tex]

4. Calculate the value:
- Dividing 625 by 1.83 gives [tex]\( I \approx 341.53005464480873 \)[/tex]

So, the calculated value of [tex]\( I \)[/tex] is approximately [tex]\( 341.53005464480873 \)[/tex].

Thank you for reading the article Calculate tex I tex in the formula tex P I cdot R tex if tex P 625 tex and tex R 1 83 tex. We hope the information provided is useful and helps you understand this topic better. Feel free to explore more helpful content on our website!

Rewritten by : Jeany