High School

Thank you for visiting The first term of an arithmetic sequence is 330 and the common difference is tex 3 1 tex Find the tex 70 text th tex. This page is designed to guide you through key points and clear explanations related to the topic at hand. We aim to make your learning experience smooth, insightful, and informative. Dive in and discover the answers you're looking for!

The first term of an arithmetic sequence is 330, and the common difference is [tex]-3.1[/tex]. Find the [tex]70^{\text{th}}[/tex] term. Round your answer to one decimal place.

Answer :

The 70th term of the arithmetic sequence is 116.1, rounded to one decimal place. The 70th term of the arithmetic sequence can be found using the formula for the nth term of an arithmetic sequence: \(a_n = a_1 + (n-1)d\),

where \(a_n\) is the nth term, \(a_1\) is the first term, \(d\) is the common difference, and \(n\) is the position of the term.

In this case, the first term \(a_1\) is 330 and the common difference \(d\) is -3.1. Plugging these values into the formula, we have \(a_{70} = 330 + (70-1)(-3.1)\).

Simplifying the expression, we get \(a_{70} = 330 + 69(-3.1) = 330 - 213.9 = 116.1\).

Therefore, the 70th term of the arithmetic sequence is 116.1, rounded to one decimal place.

An arithmetic sequence is a sequence of numbers in which the difference between consecutive terms is constant. In this case, the common difference is -3.1, indicating that each term is decreasing by 3.1 compared to the previous term.

To find the 70th term of the sequence, we can use the formula \(a_n = a_1 + (n-1)d\), where \(a_n\) represents the nth term, \(a_1\) is the first term, \(d\) is the common difference, and \(n\) is the position of the term we want to find.

In this problem, the first term \(a_1\) is given as 330 and the common difference \(d\) is -3.1. Plugging these values into the formula, we have \(a_{70} = 330 + (70-1)(-3.1)\).

Simplifying the expression, we have \(a_{70} = 330 + 69(-3.1)\). Multiplying 69 by -3.1 gives us -213.9, so we have \(a_{70} = 330 - 213.9\), which equals 116.1.

Therefore, the 70th term of the arithmetic sequence is 116.1, rounded to one decimal place.

Learn more about arithmetic sequence click here: brainly.com/question/28882428

#SPJ11

Thank you for reading the article The first term of an arithmetic sequence is 330 and the common difference is tex 3 1 tex Find the tex 70 text th tex. We hope the information provided is useful and helps you understand this topic better. Feel free to explore more helpful content on our website!

Rewritten by : Jeany