Thank you for visiting Divide using long division tex frac 3x 5 22x 4 13x 3 39x 2 14x 6 x 3 6x 2 3x 5 tex Show your. This page is designed to guide you through key points and clear explanations related to the topic at hand. We aim to make your learning experience smooth, insightful, and informative. Dive in and discover the answers you're looking for!
Answer :
Let's tackle the long division of polynomials step by step: we need to divide [tex]\(-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6\)[/tex] by [tex]\(x^3 + 6x^2 - 3x - 5\)[/tex].
### Step-by-step Process:
1. Setup: Write down the dividend and the divisor.
- Dividend: [tex]\(-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6\)[/tex]
- Divisor: [tex]\(x^3 + 6x^2 - 3x - 5\)[/tex]
2. Divide the Leading Terms:
- Take the leading term of the dividend [tex]\(-3x^5\)[/tex] and divide it by the leading term of the divisor [tex]\(x^3\)[/tex]:
[tex]\[
\frac{-3x^5}{x^3} = -3x^2
\][/tex]
- This is the first term of the quotient.
3. Multiply and Subtract:
- Multiply the entire divisor by [tex]\(-3x^2\)[/tex] and subtract the result from the dividend:
[tex]\[
(-3x^2) \times (x^3 + 6x^2 - 3x - 5) = -3x^5 - 18x^4 + 9x^3 + 15x^2
\][/tex]
- Subtract this from the dividend:
[tex]\[
(-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6) - (-3x^5 - 18x^4 + 9x^3 + 15x^2)
\][/tex]
[tex]\[
= 0x^5 - 4x^4 - 22x^3 + 24x^2 + 14x - 6
\][/tex]
4. Repeat the Process:
- Divide the new leading term [tex]\(-4x^4\)[/tex] by the leading term of the divisor [tex]\(x^3\)[/tex]:
[tex]\[
\frac{-4x^4}{x^3} = -4x
\][/tex]
- Multiply and subtract similarly:
[tex]\[
(-4x) \times (x^3 + 6x^2 - 3x - 5) = -4x^4 - 24x^3 + 12x^2 + 20x
\][/tex]
- Subtract:
[tex]\[
(0x^5 - 4x^4 - 22x^3 + 24x^2 + 14x - 6) - (-4x^4 - 24x^3 + 12x^2 + 20x)
\][/tex]
[tex]\[
= 0x^5 + 0x^4 + 2x^3 + 12x^2 - 6x - 6
\][/tex]
5. Continue the Process:
- Divide the new leading term [tex]\(2x^3\)[/tex] by [tex]\(x^3\)[/tex]:
[tex]\[
\frac{2x^3}{x^3} = 2
\][/tex]
- Multiply and subtract:
[tex]\[
(2) \times (x^3 + 6x^2 - 3x - 5) = 2x^3 + 12x^2 - 6x - 10
\][/tex]
- Subtract:
[tex]\[
(0x^5 + 0x^4 + 2x^3 + 12x^2 - 6x - 6) - (2x^3 + 12x^2 - 6x - 10)
\][/tex]
[tex]\[
= 0x^5 + 0x^4 + 0x^3 + 0x^2 + 0x + 4
\][/tex]
The result of the division, thus, is the quotient plus the remainder, which is:
[tex]\[
-3x^2 - 4x + 2 \quad \text{with a remainder of} \quad 4
\][/tex]
So, the final answer is:
[tex]\[
-3x^2 - 4x + 2 + \frac{4}{x^3 + 6x^2 - 3x - 5}
\][/tex]
### Step-by-step Process:
1. Setup: Write down the dividend and the divisor.
- Dividend: [tex]\(-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6\)[/tex]
- Divisor: [tex]\(x^3 + 6x^2 - 3x - 5\)[/tex]
2. Divide the Leading Terms:
- Take the leading term of the dividend [tex]\(-3x^5\)[/tex] and divide it by the leading term of the divisor [tex]\(x^3\)[/tex]:
[tex]\[
\frac{-3x^5}{x^3} = -3x^2
\][/tex]
- This is the first term of the quotient.
3. Multiply and Subtract:
- Multiply the entire divisor by [tex]\(-3x^2\)[/tex] and subtract the result from the dividend:
[tex]\[
(-3x^2) \times (x^3 + 6x^2 - 3x - 5) = -3x^5 - 18x^4 + 9x^3 + 15x^2
\][/tex]
- Subtract this from the dividend:
[tex]\[
(-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6) - (-3x^5 - 18x^4 + 9x^3 + 15x^2)
\][/tex]
[tex]\[
= 0x^5 - 4x^4 - 22x^3 + 24x^2 + 14x - 6
\][/tex]
4. Repeat the Process:
- Divide the new leading term [tex]\(-4x^4\)[/tex] by the leading term of the divisor [tex]\(x^3\)[/tex]:
[tex]\[
\frac{-4x^4}{x^3} = -4x
\][/tex]
- Multiply and subtract similarly:
[tex]\[
(-4x) \times (x^3 + 6x^2 - 3x - 5) = -4x^4 - 24x^3 + 12x^2 + 20x
\][/tex]
- Subtract:
[tex]\[
(0x^5 - 4x^4 - 22x^3 + 24x^2 + 14x - 6) - (-4x^4 - 24x^3 + 12x^2 + 20x)
\][/tex]
[tex]\[
= 0x^5 + 0x^4 + 2x^3 + 12x^2 - 6x - 6
\][/tex]
5. Continue the Process:
- Divide the new leading term [tex]\(2x^3\)[/tex] by [tex]\(x^3\)[/tex]:
[tex]\[
\frac{2x^3}{x^3} = 2
\][/tex]
- Multiply and subtract:
[tex]\[
(2) \times (x^3 + 6x^2 - 3x - 5) = 2x^3 + 12x^2 - 6x - 10
\][/tex]
- Subtract:
[tex]\[
(0x^5 + 0x^4 + 2x^3 + 12x^2 - 6x - 6) - (2x^3 + 12x^2 - 6x - 10)
\][/tex]
[tex]\[
= 0x^5 + 0x^4 + 0x^3 + 0x^2 + 0x + 4
\][/tex]
The result of the division, thus, is the quotient plus the remainder, which is:
[tex]\[
-3x^2 - 4x + 2 \quad \text{with a remainder of} \quad 4
\][/tex]
So, the final answer is:
[tex]\[
-3x^2 - 4x + 2 + \frac{4}{x^3 + 6x^2 - 3x - 5}
\][/tex]
Thank you for reading the article Divide using long division tex frac 3x 5 22x 4 13x 3 39x 2 14x 6 x 3 6x 2 3x 5 tex Show your. We hope the information provided is useful and helps you understand this topic better. Feel free to explore more helpful content on our website!
- You are operating a recreational vessel less than 39 4 feet long on federally controlled waters Which of the following is a legal sound device
- Which step should a food worker complete to prevent cross contact when preparing and serving an allergen free meal A Clean and sanitize all surfaces
- For one month Siera calculated her hometown s average high temperature in degrees Fahrenheit She wants to convert that temperature from degrees Fahrenheit to degrees
Rewritten by : Jeany