Thank you for visiting tex P x 6x 7 39x 6 22x 5 291x 4 60x 3 69x 2 14x 138 tex a Calculate tex P 7 tex by. This page is designed to guide you through key points and clear explanations related to the topic at hand. We aim to make your learning experience smooth, insightful, and informative. Dive in and discover the answers you're looking for!
Answer :
Sure! Let's solve this problem step-by-step.
We have the polynomial:
[tex]\[ P(x) = 6x^7 - 39x^6 + 22x^5 - 291x^4 - 60x^3 - 69x^2 + 14x - 138 \][/tex]
We need to calculate [tex]\( P(7) \)[/tex] in two ways: using synthetic division and by direct substitution.
### (a) Synthetic Division
Synthetic division is a simplified way to divide a polynomial by a linear factor of the form [tex]\( x - c \)[/tex]. In this case, we want to evaluate [tex]\( P(7) \)[/tex], which means our [tex]\( c \)[/tex] will be [tex]\( 7 \)[/tex].
1. Write down the coefficients of the polynomial:
[tex]\[ 6, -39, 22, -291, -60, -69, 14, -138 \][/tex]
2. Start with the leading coefficient, which is [tex]\( 6 \)[/tex].
3. Carry down the leading coefficient [tex]\( 6 \)[/tex].
Result: [tex]\( 6 \)[/tex]
4. Multiply the last result by [tex]\( 7\)[/tex], then add the next coefficient [tex]\( -39 \)[/tex].
Calculation: [tex]\( 6 \times 7 + (-39) = 42 - 39 = 3 \)[/tex]
5. Repeat the multiply and add process:
- [tex]\( 3 \times 7 + 22 = 21 + 22 = 43 \)[/tex]
- [tex]\( 43 \times 7 + (-291) = 301 - 291 = 10 \)[/tex]
- [tex]\( 10 \times 7 + (-60) = 70 - 60 = 10 \)[/tex]
- [tex]\( 10 \times 7 + (-69) = 70 - 69 = 1 \)[/tex]
- [tex]\( 1 \times 7 + 14 = 7 + 14 = 21 \)[/tex]
- [tex]\( 21 \times 7 + (-138) = 147 - 138 = 9 \)[/tex]
6. The last value obtained is the remainder, which gives [tex]\( P(7) \)[/tex].
So, [tex]\( P(7) = 9 \)[/tex].
### (b) Direct Substitution
We can directly substitute [tex]\( x = 7 \)[/tex] into the polynomial and evaluate:
[tex]\[ P(7) = 6(7^7) - 39(7^6) + 22(7^5) - 291(7^4) - 60(7^3) - 69(7^2) + 14(7) - 138 \][/tex]
Let's calculate each term:
1. [tex]\( 6 \times 7^7 = 6 \times 823543 = 4941258 \)[/tex]
2. [tex]\( 39 \times 7^6 = 39 \times 117649 = 4588321 \)[/tex]
3. [tex]\( 22 \times 7^5 = 22 \times 16807 = 369754 \)[/tex]
4. [tex]\( 291 \times 7^4 = 291 \times 2401 = 698691 \)[/tex]
5. [tex]\( 60 \times 7^3 = 60 \times 343 = 20580 \)[/tex]
6. [tex]\( 69 \times 7^2 = 69 \times 49 = 3381 \)[/tex]
7. [tex]\( 14 \times 7 = 98 \)[/tex]
8. Trailing constant term: [tex]\(-138\)[/tex]
Now summing all terms:
[tex]\[
P(7) = 4941258 - 4588321 + 369754 - 698691 - 20580 - 3381 + 98 - 138 = 9
\][/tex]
Therefore, by direct substitution, we also find [tex]\( P(7) = 9 \)[/tex].
So, both methods confirm that [tex]\( P(7) = 9 \)[/tex].
We have the polynomial:
[tex]\[ P(x) = 6x^7 - 39x^6 + 22x^5 - 291x^4 - 60x^3 - 69x^2 + 14x - 138 \][/tex]
We need to calculate [tex]\( P(7) \)[/tex] in two ways: using synthetic division and by direct substitution.
### (a) Synthetic Division
Synthetic division is a simplified way to divide a polynomial by a linear factor of the form [tex]\( x - c \)[/tex]. In this case, we want to evaluate [tex]\( P(7) \)[/tex], which means our [tex]\( c \)[/tex] will be [tex]\( 7 \)[/tex].
1. Write down the coefficients of the polynomial:
[tex]\[ 6, -39, 22, -291, -60, -69, 14, -138 \][/tex]
2. Start with the leading coefficient, which is [tex]\( 6 \)[/tex].
3. Carry down the leading coefficient [tex]\( 6 \)[/tex].
Result: [tex]\( 6 \)[/tex]
4. Multiply the last result by [tex]\( 7\)[/tex], then add the next coefficient [tex]\( -39 \)[/tex].
Calculation: [tex]\( 6 \times 7 + (-39) = 42 - 39 = 3 \)[/tex]
5. Repeat the multiply and add process:
- [tex]\( 3 \times 7 + 22 = 21 + 22 = 43 \)[/tex]
- [tex]\( 43 \times 7 + (-291) = 301 - 291 = 10 \)[/tex]
- [tex]\( 10 \times 7 + (-60) = 70 - 60 = 10 \)[/tex]
- [tex]\( 10 \times 7 + (-69) = 70 - 69 = 1 \)[/tex]
- [tex]\( 1 \times 7 + 14 = 7 + 14 = 21 \)[/tex]
- [tex]\( 21 \times 7 + (-138) = 147 - 138 = 9 \)[/tex]
6. The last value obtained is the remainder, which gives [tex]\( P(7) \)[/tex].
So, [tex]\( P(7) = 9 \)[/tex].
### (b) Direct Substitution
We can directly substitute [tex]\( x = 7 \)[/tex] into the polynomial and evaluate:
[tex]\[ P(7) = 6(7^7) - 39(7^6) + 22(7^5) - 291(7^4) - 60(7^3) - 69(7^2) + 14(7) - 138 \][/tex]
Let's calculate each term:
1. [tex]\( 6 \times 7^7 = 6 \times 823543 = 4941258 \)[/tex]
2. [tex]\( 39 \times 7^6 = 39 \times 117649 = 4588321 \)[/tex]
3. [tex]\( 22 \times 7^5 = 22 \times 16807 = 369754 \)[/tex]
4. [tex]\( 291 \times 7^4 = 291 \times 2401 = 698691 \)[/tex]
5. [tex]\( 60 \times 7^3 = 60 \times 343 = 20580 \)[/tex]
6. [tex]\( 69 \times 7^2 = 69 \times 49 = 3381 \)[/tex]
7. [tex]\( 14 \times 7 = 98 \)[/tex]
8. Trailing constant term: [tex]\(-138\)[/tex]
Now summing all terms:
[tex]\[
P(7) = 4941258 - 4588321 + 369754 - 698691 - 20580 - 3381 + 98 - 138 = 9
\][/tex]
Therefore, by direct substitution, we also find [tex]\( P(7) = 9 \)[/tex].
So, both methods confirm that [tex]\( P(7) = 9 \)[/tex].
Thank you for reading the article tex P x 6x 7 39x 6 22x 5 291x 4 60x 3 69x 2 14x 138 tex a Calculate tex P 7 tex by. We hope the information provided is useful and helps you understand this topic better. Feel free to explore more helpful content on our website!
- You are operating a recreational vessel less than 39 4 feet long on federally controlled waters Which of the following is a legal sound device
- Which step should a food worker complete to prevent cross contact when preparing and serving an allergen free meal A Clean and sanitize all surfaces
- For one month Siera calculated her hometown s average high temperature in degrees Fahrenheit She wants to convert that temperature from degrees Fahrenheit to degrees
Rewritten by : Jeany