Thank you for visiting Divide the polynomial tex frac 3x 5 22x 4 13x 3 39x 2 14x 6 x 3 6x 2 3x 5 tex Make sure to. This page is designed to guide you through key points and clear explanations related to the topic at hand. We aim to make your learning experience smooth, insightful, and informative. Dive in and discover the answers you're looking for!
Answer :
To solve the problem of dividing the polynomial [tex]\(-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6\)[/tex] by the polynomial [tex]\(x^3 + 6x^2 - 3x - 5\)[/tex], we can perform polynomial long division. Here is a step-by-step breakdown of the process:
1. Set up the division: Place the dividend, [tex]\(-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6\)[/tex], under the division symbol, and the divisor, [tex]\(x^3 + 6x^2 - 3x - 5\)[/tex], outside.
2. Determine the first term of the quotient: Divide the leading term of the dividend, [tex]\(-3x^5\)[/tex], by the leading term of the divisor, [tex]\(x^3\)[/tex].
[tex]\[
\frac{-3x^5}{x^3} = -3x^2
\][/tex]
This is the first term of the quotient.
3. Multiply and subtract: Multiply the entire divisor [tex]\(x^3 + 6x^2 - 3x - 5\)[/tex] by [tex]\(-3x^2\)[/tex] and subtract the result from the dividend.
[tex]\[
(-3x^2) \times (x^3 + 6x^2 - 3x - 5) = -3x^5 - 18x^4 + 9x^3 + 15x^2
\][/tex]
Subtracting this from the original polynomial:
[tex]\[
(-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6) - (-3x^5 - 18x^4 + 9x^3 + 15x^2) = -4x^4 - 22x^3 + 24x^2 + 14x - 6
\][/tex]
4. Repeat the process: Divide the new leading term, [tex]\(-4x^4\)[/tex], by the leading term of the divisor, [tex]\(x^3\)[/tex].
[tex]\[
\frac{-4x^4}{x^3} = -4x
\][/tex]
Multiply the divisor by [tex]\(-4x\)[/tex]:
[tex]\[
(-4x) \times (x^3 + 6x^2 - 3x - 5) = -4x^4 - 24x^3 + 12x^2 + 20x
\][/tex]
Subtract:
[tex]\[
(-4x^4 - 22x^3 + 24x^2 + 14x - 6) - (-4x^4 - 24x^3 + 12x^2 + 20x) = 2x^3 + 12x^2 - 6x - 6
\][/tex]
5. Proceed further: Divide the new leading term, [tex]\(2x^3\)[/tex], by the leading term of the divisor, [tex]\(x^3\)[/tex].
[tex]\[
\frac{2x^3}{x^3} = 2
\][/tex]
Multiply the divisor by [tex]\(2\)[/tex]:
[tex]\[
2 \times (x^3 + 6x^2 - 3x - 5) = 2x^3 + 12x^2 - 6x - 10
\][/tex]
Subtract:
[tex]\[
(2x^3 + 12x^2 - 6x - 6) - (2x^3 + 12x^2 - 6x - 10) = 4
\][/tex]
6. Conclusion: The remainder is [tex]\(4\)[/tex], and the quotient is [tex]\(-3x^2 - 4x + 2\)[/tex].
Thus, the result of the division is:
[tex]\[
-3x^2 - 4x + 2 \quad \text{with a remainder of} \quad 4
\][/tex]
1. Set up the division: Place the dividend, [tex]\(-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6\)[/tex], under the division symbol, and the divisor, [tex]\(x^3 + 6x^2 - 3x - 5\)[/tex], outside.
2. Determine the first term of the quotient: Divide the leading term of the dividend, [tex]\(-3x^5\)[/tex], by the leading term of the divisor, [tex]\(x^3\)[/tex].
[tex]\[
\frac{-3x^5}{x^3} = -3x^2
\][/tex]
This is the first term of the quotient.
3. Multiply and subtract: Multiply the entire divisor [tex]\(x^3 + 6x^2 - 3x - 5\)[/tex] by [tex]\(-3x^2\)[/tex] and subtract the result from the dividend.
[tex]\[
(-3x^2) \times (x^3 + 6x^2 - 3x - 5) = -3x^5 - 18x^4 + 9x^3 + 15x^2
\][/tex]
Subtracting this from the original polynomial:
[tex]\[
(-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6) - (-3x^5 - 18x^4 + 9x^3 + 15x^2) = -4x^4 - 22x^3 + 24x^2 + 14x - 6
\][/tex]
4. Repeat the process: Divide the new leading term, [tex]\(-4x^4\)[/tex], by the leading term of the divisor, [tex]\(x^3\)[/tex].
[tex]\[
\frac{-4x^4}{x^3} = -4x
\][/tex]
Multiply the divisor by [tex]\(-4x\)[/tex]:
[tex]\[
(-4x) \times (x^3 + 6x^2 - 3x - 5) = -4x^4 - 24x^3 + 12x^2 + 20x
\][/tex]
Subtract:
[tex]\[
(-4x^4 - 22x^3 + 24x^2 + 14x - 6) - (-4x^4 - 24x^3 + 12x^2 + 20x) = 2x^3 + 12x^2 - 6x - 6
\][/tex]
5. Proceed further: Divide the new leading term, [tex]\(2x^3\)[/tex], by the leading term of the divisor, [tex]\(x^3\)[/tex].
[tex]\[
\frac{2x^3}{x^3} = 2
\][/tex]
Multiply the divisor by [tex]\(2\)[/tex]:
[tex]\[
2 \times (x^3 + 6x^2 - 3x - 5) = 2x^3 + 12x^2 - 6x - 10
\][/tex]
Subtract:
[tex]\[
(2x^3 + 12x^2 - 6x - 6) - (2x^3 + 12x^2 - 6x - 10) = 4
\][/tex]
6. Conclusion: The remainder is [tex]\(4\)[/tex], and the quotient is [tex]\(-3x^2 - 4x + 2\)[/tex].
Thus, the result of the division is:
[tex]\[
-3x^2 - 4x + 2 \quad \text{with a remainder of} \quad 4
\][/tex]
Thank you for reading the article Divide the polynomial tex frac 3x 5 22x 4 13x 3 39x 2 14x 6 x 3 6x 2 3x 5 tex Make sure to. We hope the information provided is useful and helps you understand this topic better. Feel free to explore more helpful content on our website!
- You are operating a recreational vessel less than 39 4 feet long on federally controlled waters Which of the following is a legal sound device
- Which step should a food worker complete to prevent cross contact when preparing and serving an allergen free meal A Clean and sanitize all surfaces
- For one month Siera calculated her hometown s average high temperature in degrees Fahrenheit She wants to convert that temperature from degrees Fahrenheit to degrees
Rewritten by : Jeany