College

Thank you for visiting Show how algebra can be used to work out each of these without a calculator a tex 268 2 232 2 tex b tex 469. This page is designed to guide you through key points and clear explanations related to the topic at hand. We aim to make your learning experience smooth, insightful, and informative. Dive in and discover the answers you're looking for!

Show how algebra can be used to work out each of these without a calculator.

a) [tex]268^2 - 232^2[/tex]

b) [tex]469 \times 548 + 469^2 - 469 \times 17[/tex]

c) [tex]\frac{65.1 \times 29.2 + 65.1 \times 35.9 - 91.7 \times 26.4 + 65.3 \times 26.4}{18.3^2 - 18.3 \times 5.4}[/tex]

Answer :

Sure! Let's break down each part of the problem using algebra:

### Part (a): [tex]\(268^2 - 232^2\)[/tex]

To solve this, we can use the difference of squares formula:
[tex]\[ a^2 - b^2 = (a - b)(a + b) \][/tex]

Let's set [tex]\( a = 268 \)[/tex] and [tex]\( b = 232 \)[/tex].

1. Calculate [tex]\( a - b \)[/tex]:
[tex]\[ 268 - 232 = 36 \][/tex]

2. Calculate [tex]\( a + b \)[/tex]:
[tex]\[ 268 + 232 = 500 \][/tex]

3. Apply the difference of squares formula:
[tex]\[ 268^2 - 232^2 = (268 - 232)(268 + 232) = 36 \times 500 = 18000 \][/tex]

So, the result for part (a) is 18000.

### Part (b): [tex]\(469 \times 548 + 469^2 - 469 \times 17\)[/tex]

Here, we can factor by grouping:

1. Notice that [tex]\(469\)[/tex] is common in all terms, so let's factor [tex]\(469\)[/tex] out:
[tex]\[ 469 \times (548 + 469 - 17) \][/tex]

2. Simplify inside the parentheses:
[tex]\[ 548 + 469 - 17 = 1000 \][/tex]

3. Multiply:
[tex]\[ 469 \times 1000 = 469000 \][/tex]

So, the result for part (b) is 469000.

### Part (c): [tex]\(\frac{65.1 \times 29.2 + 65.1 \times 35.9 - 91.7 \times 26.4 + 65.3 \times 26.4}{18.3^2 - 18.3 \times 5.4}\)[/tex]

For this part, we simplify both the numerator and the denominator:

1. Factor and simplify the numerator:

- Notice that [tex]\(65.1\)[/tex] is common in the first two terms:
[tex]\[ 65.1 \times (29.2 + 35.9) - 91.7 \times 26.4 + 65.3 \times 26.4 \][/tex]

- Simplify inside the parenthesis:
[tex]\[ 29.2 + 35.9 = 65.1 \][/tex]

- This simplifies further to:
[tex]\[ 65.1 \times 65.1 - 91.7 \times 26.4 + 65.3 \times 26.4 \][/tex]

- Combine like terms for the [tex]\(26.4\)[/tex] terms:
[tex]\[ 65.1 \times 65.1 + (65.3 - 91.7) \times 26.4 \][/tex]

2. Simplify the denominator:

- Use distribution:
[tex]\[ 18.3^2 - 18.3 \times 5.4 \][/tex]
[tex]\[ 18.3 \times (18.3 - 5.4) = 18.3 \times 12.9 \][/tex]

3. Calculate the result:

[tex]\[ \text{Result} = \frac{\text{Simplified Numerator}}{\text{Simplified Denominator}} = 15 \][/tex]

Therefore, the result for part (c) is approximately 15.

Thank you for reading the article Show how algebra can be used to work out each of these without a calculator a tex 268 2 232 2 tex b tex 469. We hope the information provided is useful and helps you understand this topic better. Feel free to explore more helpful content on our website!

Rewritten by : Jeany