High School

Thank you for visiting Suppose that tex rho tex partners equally share the profits from a sale of tex 3 600 tex Which algebraic expression represents this situation A. This page is designed to guide you through key points and clear explanations related to the topic at hand. We aim to make your learning experience smooth, insightful, and informative. Dive in and discover the answers you're looking for!

Suppose that [tex]$\rho$[/tex] partners equally share the profits from a sale of [tex]$\$3,600$[/tex]. Which algebraic expression represents this situation?

A. [tex]3600 + \rho[/tex]

B. [tex]3600 - \rho[/tex]

C. [tex]3600 \cdot \rho[/tex]

D. [tex]\frac{3600}{\rho}[/tex]

Answer :

To solve this problem, we need to find the algebraic expression that represents how profits are shared equally among [tex]\(\rho\)[/tex] partners from a sale of [tex]$3,600.

Here's the step-by-step breakdown:

1. Understanding Equal Sharing:
- When profits are shared equally, each partner receives an equal portion of the total profit.
- The total profit here is $[/tex]3,600.

2. Determine Each Partner's Share:
- If there are [tex]\(\rho\)[/tex] partners, each partner will receive a part of the total profit.
- To find out how much each partner gets, you need to divide the total profit by the number of partners.

3. Algebraic Expression:
- The total profit is $3,600.
- The number of partners is represented by [tex]\(\rho\)[/tex].
- Thus, the expression for how much one partner receives is the total profit divided by the number of partners: [tex]\(\frac{3600}{\rho}\)[/tex].

Therefore, the correct algebraic expression that represents this situation is [tex]\(\frac{3600}{\rho}\)[/tex].

Thank you for reading the article Suppose that tex rho tex partners equally share the profits from a sale of tex 3 600 tex Which algebraic expression represents this situation A. We hope the information provided is useful and helps you understand this topic better. Feel free to explore more helpful content on our website!

Rewritten by : Jeany