Middle School

Thank you for visiting What is the mass in grams of tex 1 70 times 10 21 tex molecules of aspirin tex C 9H 8O 4 tex. This page is designed to guide you through key points and clear explanations related to the topic at hand. We aim to make your learning experience smooth, insightful, and informative. Dive in and discover the answers you're looking for!

What is the mass, in grams, of [tex]1.70 \times 10^{21}[/tex] molecules of aspirin, [tex]C_9H_8O_4[/tex]?

Answer :

[tex]\boxed{0.508{\text{ g}}}[/tex] is the mass of [tex]1.70 \times {\text{1}}{{\text{0}}^{{\text{21}}}}\;{\text{molecules}}[/tex] of aspirin.


Further Explanation:

Avogadro’s number is a mathematical number that determines the number of atoms or molecules in one mole of the substance. The value of Avogadro’s number is [tex]{\text{6}}{\text{.022}} \times {\text{1}}{{\text{0}}^{{\text{23}}}}\;{\text{units}}[/tex]. These units can either be atoms or molecules.


There are [tex]{\text{6}}{\text{.022}} \times {\text{1}}{{\text{0}}^{{\text{23}}}}\;{\text{molecules}}[/tex] in one mole of aspirin. Therefore the number of moles in [tex]1.70 \times {\text{1}}{{\text{0}}^{{\text{21}}}}\;{\text{molecules}}[/tex] of aspirin can be calculated as follows:

[tex]\begin{aligned}{\text{Moles of aspirin}}&= \left( {1.70 \times {\text{1}}{{\text{0}}^{{\text{21}}}}\;{\text{molecules}}} \right)\left( {\frac{{1{\text{ mol}}}}{{6.022 \times {\text{1}}{{\text{0}}^{{\text{23}}}}\;{\text{molecules}}}}} \right)\\&= 0.002823{\text{ mol}}\\\end{aligned}[/tex]


The moles of aspirin can be calculated by the following formula.s

[tex]{\text{Moles of aspirin}}=\dfrac{{{\text{Mass of aspirin}}}}{{{\text{Molar mass of aspirin}}}}[/tex] …… (1)


Rearrange equation (1) for the mass of aspirin.

[tex]{\text{Mass of aspirin}} = \left( {{\text{Moles of aspirin}}} \right)\left( {{\text{Molar mass of aspirin}}} \right)[/tex] …… (2)


The molar mass of aspirin [tex]\left( {{{\text{C}}_{\text{9}}}{{\text{H}}_{\text{8}}}{{\text{O}}_{\text{4}}}} \right)[/tex] can be calculated as follows:

[tex]{\text{Molar mass of }}{{\text{C}}_{\text{9}}}{{\text{H}}_{\text{8}}}{{\text{O}}_{\text{4}}} = \left[ \begin{aligned}9\left( {{\text{Atomic mass of C}}} \right)+\hfill\\8\left({{\text{Atomic mass of H}}} \right)+\hfill\\4\left( {{\text{Atomic mass of O}}} \right) \hfill\\\end{aligned} \right][/tex] …… (3)


Substitute 12.01 g for the atomic mass of C, 1.008 g for the atomic mass of H and 15.99 g for the atomic mass of O in equation (3).

[tex]\begin{aligned}{\text{Molar mass of }}{{\text{C}}_{\text{9}}}{{\text{H}}_{\text{8}}}{{\text{O}}_{\text{4}}} &= \left[ {9\left( {{\text{12}}{\text{.01 g}}} \right) + 8\left( {{\text{1}}{\text{.008 g}}} \right) + 4\left( {{\text{15}}{\text{.99 g}}} \right)} \right]\\&= \left[ {108.09{\text{ g}} + 8.064{\text{ g}} + 63.96{\text{ g}}} \right]\\&= 180.114{\text{ g/mol}}\\\end{aligned}[/tex]


Substitute 0.002823 mol for the moles of aspirin and 180.114 g/mol for the molar mass of aspirin in equation (2).

[tex]\begin{aligned}{\text{Mass of aspirin}}&= \left( {{\text{0}}{\text{.002823 mol}}} \right)\left( {\frac{{{\text{180}}{\text{.114 g}}}}{{1{\text{ mol}}}}} \right)\\&= 0.508{\text{ g}}\\\end{aligned}[/tex]


Therefore the mass of aspirin is 0.508 g.


Learn more:

  1. Calculate the moles of chlorine in 8 moles of carbon tetrachloride: https://brainly.com/question/3064603
  2. Calculate the moles of ions in the solution: https://brainly.com/question/5950133


Answer details:

Grade: Senior School

Chapter: Mole concept

Subject: Chemistry


Keywords: aspirin, molar mass, atomic mass, C, H, O, C9H8O4, Avogadro’s number, 0.508 g, 15.99 g, 12.01 g, 1.008 g.

Thank you for reading the article What is the mass in grams of tex 1 70 times 10 21 tex molecules of aspirin tex C 9H 8O 4 tex. We hope the information provided is useful and helps you understand this topic better. Feel free to explore more helpful content on our website!

Rewritten by : Jeany

The answer is 0.508gram

The molecular mass for aspirin (C9H8O4) should be 180g/mol. One mol is composed of 6.02* 10^23 molecule. So, the mass of 1.70×1021 molecules of aspirin would be: (1.70×10^21 molecules) * (1 mol /6.02* 10^23 molecule) * 180g/mol= 0.508 gram