Answer :

To solve the equation [tex]\(\log_e 2 \cdot \log_b 625 = \log_{10} 16 \cdot \log_e 10\)[/tex], we need to find the value of [tex]\(b\)[/tex].

Step 1: Understand the equation
The given equation is:

[tex]\[ \log_e 2 \cdot \log_b 625 = \log_{10} 16 \cdot \log_e 10 \][/tex]

Step 2: Apply the change of base formula
We can use the change of base formula which states:

[tex]\[
\log_b x = \frac{\log_e x}{\log_e b}
\][/tex]

Step 3: Rewrite the equation using natural logarithms

Using the change of base formula, we have:

[tex]\[ \log_b 625 = \frac{\log_e 625}{\log_e b} \][/tex]
[tex]\[ \log_{10} 16 = \frac{\log_e 16}{\log_e 10} \][/tex]

Replace these in the original equation:

[tex]\[
\log_e 2 \cdot \frac{\log_e 625}{\log_e b} = \frac{\log_e 16}{\log_e 10} \cdot \log_e 10
\][/tex]

Which simplifies to:

[tex]\[
\log_e 2 \cdot \frac{\log_e 625}{\log_e b} = \log_e 16
\][/tex]

Step 4: Solve for [tex]\(\log_e b\)[/tex]

This simplifies the equation to:

[tex]\[
\log_e b = \frac{\log_e 625 \cdot \log_e 2}{\log_e 16}
\][/tex]

Step 5: Calculate individual logs

Now, calculate each component:

- [tex]\(\log_e 2\)[/tex]
- [tex]\(\log_e 625\)[/tex]
- [tex]\(\log_e 16\)[/tex]

From the Python solution:

- [tex]\(\log_e 2 \approx 0.693147\)[/tex]
- [tex]\(\log_e 625 \approx 6.437752\)[/tex]
- [tex]\(\log_e 16 \approx 2.772589\)[/tex]

Step 6: Substitute known values and solve

Substitute these values back into our expression for [tex]\(\log_e b\)[/tex]:

[tex]\[
\log_e b \approx \frac{6.437752 \times 0.693147}{2.772589}
\][/tex]

When you do this calculation, you find:

[tex]\(\log_e b \approx 1.609438\)[/tex]

Step 7: Calculate [tex]\(b\)[/tex]

Now, solve for [tex]\(b\)[/tex] by using the exponential function:

[tex]\[
b = e^{\log_e b} \approx e^{1.609438} = 5
\][/tex]

Thus, the value of [tex]\(b\)[/tex] is [tex]\(5\)[/tex].

Thank you for reading the article If tex log e 2 cdot log b 625 log 10 16 cdot log e 10 tex then tex b tex. We hope the information provided is useful and helps you understand this topic better. Feel free to explore more helpful content on our website!

Rewritten by : Jeany