Thank you for visiting If tex log e 2 cdot log b 625 log 10 16 cdot log e 10 tex then tex b tex. This page is designed to guide you through key points and clear explanations related to the topic at hand. We aim to make your learning experience smooth, insightful, and informative. Dive in and discover the answers you're looking for!
Answer :
To solve the equation [tex]\(\log_e 2 \cdot \log_b 625 = \log_{10} 16 \cdot \log_e 10\)[/tex], we need to find the value of [tex]\(b\)[/tex].
Step 1: Understand the equation
The given equation is:
[tex]\[ \log_e 2 \cdot \log_b 625 = \log_{10} 16 \cdot \log_e 10 \][/tex]
Step 2: Apply the change of base formula
We can use the change of base formula which states:
[tex]\[
\log_b x = \frac{\log_e x}{\log_e b}
\][/tex]
Step 3: Rewrite the equation using natural logarithms
Using the change of base formula, we have:
[tex]\[ \log_b 625 = \frac{\log_e 625}{\log_e b} \][/tex]
[tex]\[ \log_{10} 16 = \frac{\log_e 16}{\log_e 10} \][/tex]
Replace these in the original equation:
[tex]\[
\log_e 2 \cdot \frac{\log_e 625}{\log_e b} = \frac{\log_e 16}{\log_e 10} \cdot \log_e 10
\][/tex]
Which simplifies to:
[tex]\[
\log_e 2 \cdot \frac{\log_e 625}{\log_e b} = \log_e 16
\][/tex]
Step 4: Solve for [tex]\(\log_e b\)[/tex]
This simplifies the equation to:
[tex]\[
\log_e b = \frac{\log_e 625 \cdot \log_e 2}{\log_e 16}
\][/tex]
Step 5: Calculate individual logs
Now, calculate each component:
- [tex]\(\log_e 2\)[/tex]
- [tex]\(\log_e 625\)[/tex]
- [tex]\(\log_e 16\)[/tex]
From the Python solution:
- [tex]\(\log_e 2 \approx 0.693147\)[/tex]
- [tex]\(\log_e 625 \approx 6.437752\)[/tex]
- [tex]\(\log_e 16 \approx 2.772589\)[/tex]
Step 6: Substitute known values and solve
Substitute these values back into our expression for [tex]\(\log_e b\)[/tex]:
[tex]\[
\log_e b \approx \frac{6.437752 \times 0.693147}{2.772589}
\][/tex]
When you do this calculation, you find:
[tex]\(\log_e b \approx 1.609438\)[/tex]
Step 7: Calculate [tex]\(b\)[/tex]
Now, solve for [tex]\(b\)[/tex] by using the exponential function:
[tex]\[
b = e^{\log_e b} \approx e^{1.609438} = 5
\][/tex]
Thus, the value of [tex]\(b\)[/tex] is [tex]\(5\)[/tex].
Step 1: Understand the equation
The given equation is:
[tex]\[ \log_e 2 \cdot \log_b 625 = \log_{10} 16 \cdot \log_e 10 \][/tex]
Step 2: Apply the change of base formula
We can use the change of base formula which states:
[tex]\[
\log_b x = \frac{\log_e x}{\log_e b}
\][/tex]
Step 3: Rewrite the equation using natural logarithms
Using the change of base formula, we have:
[tex]\[ \log_b 625 = \frac{\log_e 625}{\log_e b} \][/tex]
[tex]\[ \log_{10} 16 = \frac{\log_e 16}{\log_e 10} \][/tex]
Replace these in the original equation:
[tex]\[
\log_e 2 \cdot \frac{\log_e 625}{\log_e b} = \frac{\log_e 16}{\log_e 10} \cdot \log_e 10
\][/tex]
Which simplifies to:
[tex]\[
\log_e 2 \cdot \frac{\log_e 625}{\log_e b} = \log_e 16
\][/tex]
Step 4: Solve for [tex]\(\log_e b\)[/tex]
This simplifies the equation to:
[tex]\[
\log_e b = \frac{\log_e 625 \cdot \log_e 2}{\log_e 16}
\][/tex]
Step 5: Calculate individual logs
Now, calculate each component:
- [tex]\(\log_e 2\)[/tex]
- [tex]\(\log_e 625\)[/tex]
- [tex]\(\log_e 16\)[/tex]
From the Python solution:
- [tex]\(\log_e 2 \approx 0.693147\)[/tex]
- [tex]\(\log_e 625 \approx 6.437752\)[/tex]
- [tex]\(\log_e 16 \approx 2.772589\)[/tex]
Step 6: Substitute known values and solve
Substitute these values back into our expression for [tex]\(\log_e b\)[/tex]:
[tex]\[
\log_e b \approx \frac{6.437752 \times 0.693147}{2.772589}
\][/tex]
When you do this calculation, you find:
[tex]\(\log_e b \approx 1.609438\)[/tex]
Step 7: Calculate [tex]\(b\)[/tex]
Now, solve for [tex]\(b\)[/tex] by using the exponential function:
[tex]\[
b = e^{\log_e b} \approx e^{1.609438} = 5
\][/tex]
Thus, the value of [tex]\(b\)[/tex] is [tex]\(5\)[/tex].
Thank you for reading the article If tex log e 2 cdot log b 625 log 10 16 cdot log e 10 tex then tex b tex. We hope the information provided is useful and helps you understand this topic better. Feel free to explore more helpful content on our website!
- You are operating a recreational vessel less than 39 4 feet long on federally controlled waters Which of the following is a legal sound device
- Which step should a food worker complete to prevent cross contact when preparing and serving an allergen free meal A Clean and sanitize all surfaces
- For one month Siera calculated her hometown s average high temperature in degrees Fahrenheit She wants to convert that temperature from degrees Fahrenheit to degrees
Rewritten by : Jeany