College

Thank you for visiting Which polynomial can be factored using the binomial theorem A tex 25x 2 75x 225 tex B tex 25x 2 300x 225 tex C tex. This page is designed to guide you through key points and clear explanations related to the topic at hand. We aim to make your learning experience smooth, insightful, and informative. Dive in and discover the answers you're looking for!

Which polynomial can be factored using the binomial theorem?

A. [tex]$25x^2 + 75x + 225$[/tex]

B. [tex]$25x^2 + 300x + 225$[/tex]

C. [tex]$625x^4 + 1,875x^3 + 5,625x^2 + 16,875x + 50,625$[/tex]

D. [tex]$625x^4 + 7,500x^3 + 33,750x^2 + 67,500x + 50,625$[/tex]

Answer :

To determine which polynomial can be factored using the binomial theorem, we'll factor each polynomial step by step.

1. Polynomial: [tex]\( 25x^2 + 75x + 225 \)[/tex]

- Factor out the common factor from each term:
[tex]\[
25x^2 + 75x + 225 = 25(x^2 + 3x + 9)
\][/tex]
- The expression inside the parentheses, [tex]\( x^2 + 3x + 9 \)[/tex], does not fit the pattern of a binomial square, so it cannot be factored using the binomial theorem.

2. Polynomial: [tex]\( 25x^2 + 300x + 225 \)[/tex]

- Factor out the common factor from each term:
[tex]\[
25x^2 + 300x + 225 = 25(x^2 + 12x + 9)
\][/tex]
- The expression inside the parentheses, [tex]\( x^2 + 12x + 9 \)[/tex], doesn't precisely fit the binomial pattern such as [tex]\((a+b)^2\)[/tex].

3. Polynomial: [tex]\( 625x^4 + 1875x^3 + 5625x^2 + 16875x + 50625 \)[/tex]

- Factor out the common factor from each term:
[tex]\[
625(x^4 + 3x^3 + 9x^2 + 27x + 81)
\][/tex]
- Although we have factored out [tex]\( 625 \)[/tex], the polynomial inside, [tex]\( x^4 + 3x^3 + 9x^2 + 27x + 81 \)[/tex], is not a simple binomial expansion.

4. Polynomial: [tex]\( 625x^4 + 7500x^3 + 33750x^2 + 67500x + 50625 \)[/tex]

- Factor out the common factor from each term:
[tex]\[
625(x^4 + 12x^3 + 54x^2 + 108x + 81)
\][/tex]
- This polynomial can be factored further by recognizing patterns:
[tex]\[
625(x + 3)^4
\][/tex]
- The expression [tex]\( (x + 3)^4 \)[/tex] fits the binomial expansion theorem perfectly, i.e., it expands into [tex]\( x^4 + 4(x^3)(3) + 6(x^2)(3^2) + 4(x)(3^3) + 3^4 \)[/tex].

So, the polynomial that can be factored using the binomial theorem is:
[tex]\[ \boxed{625x^4 + 7500x^3 + 33750x^2 + 67500x + 50625} \][/tex]
It can be factored as:
[tex]\[ 625(x + 3)^4 \][/tex]

Thank you for reading the article Which polynomial can be factored using the binomial theorem A tex 25x 2 75x 225 tex B tex 25x 2 300x 225 tex C tex. We hope the information provided is useful and helps you understand this topic better. Feel free to explore more helpful content on our website!

Rewritten by : Jeany