Thank you for visiting Simplify the expression tex 625y 2 400y 36 20z z 2 tex. This page is designed to guide you through key points and clear explanations related to the topic at hand. We aim to make your learning experience smooth, insightful, and informative. Dive in and discover the answers you're looking for!
Answer :
We start with the expression
[tex]$$
625y^2 + 400y - 36 + 20z - z^2.
$$[/tex]
Step 1. Group the terms in [tex]\( y \)[/tex] and [tex]\( z \)[/tex].
Separate the expression into two groups:
[tex]$$
\underbrace{625y^2 + 400y - 36}_{\text{terms in } y} \quad \text{and} \quad \underbrace{20z - z^2}_{\text{terms in } z}.
$$[/tex]
Step 2. Rewrite the [tex]\( y \)[/tex]-terms as a completed square.
Notice that
[tex]$$
(25y + 8)^2 = 625y^2 + 400y + 64.
$$[/tex]
This is very similar to the [tex]\( y \)[/tex]-terms in our expression. To correct for the difference in the constant term, write:
[tex]$$
625y^2 + 400y - 36 = (25y + 8)^2 - 100,
$$[/tex]
since
[tex]$$
(25y + 8)^2 - 100 = \left(625y^2 + 400y + 64\right) - 100 = 625y^2 + 400y - 36.
$$[/tex]
Step 3. Rewrite the [tex]\( z \)[/tex]-terms as a completed square.
For the [tex]\( z \)[/tex]-terms, first factor out a negative sign:
[tex]$$
20z - z^2 = -\left(z^2 - 20z\right).
$$[/tex]
Now, complete the square for [tex]\( z^2 - 20z \)[/tex] by noticing that:
[tex]$$
(z - 10)^2 = z^2 - 20z + 100.
$$[/tex]
Thus, we can write:
[tex]$$
z^2 - 20z = (z - 10)^2 - 100,
$$[/tex]
and so
[tex]$$
20z - z^2 = -\left[(z - 10)^2 - 100\right] = 100 - (z - 10)^2.
$$[/tex]
Step 4. Combine the rewritten parts.
Substitute the rewritten forms into the original expression:
[tex]\[
\begin{aligned}
625y^2 + 400y - 36 + 20z - z^2 &= \Bigl[(25y + 8)^2 - 100\Bigr] + \Bigl[100 - (z-10)^2\Bigr] \\
&= (25y + 8)^2 - (z-10)^2.
\end{aligned}
\][/tex]
Now the expression is written as a difference of two squares.
Step 5. Factor the difference of squares.
Recall that a difference of two squares factors as:
[tex]$$
A^2 - B^2 = (A - B)(A + B).
$$[/tex]
Here, let:
[tex]$$
A = 25y + 8 \quad \text{and} \quad B = z - 10.
$$[/tex]
Thus, the expression factors as:
[tex]\[
\begin{aligned}
(25y + 8)^2 - (z-10)^2 &= \Bigl[(25y + 8) - (z-10)\Bigr]\, \Bigl[(25y + 8) + (z-10)\Bigr] \\
&= (25y + 8 - z + 10)(25y + 8 + z - 10) \\
&= (25y - z + 18)(25y + z - 2).
\end{aligned}
\][/tex]
Final Answer:
The factored form of the expression is
[tex]$$
\boxed{(25y - z + 18)(25y + z - 2)}.
$$[/tex]
[tex]$$
625y^2 + 400y - 36 + 20z - z^2.
$$[/tex]
Step 1. Group the terms in [tex]\( y \)[/tex] and [tex]\( z \)[/tex].
Separate the expression into two groups:
[tex]$$
\underbrace{625y^2 + 400y - 36}_{\text{terms in } y} \quad \text{and} \quad \underbrace{20z - z^2}_{\text{terms in } z}.
$$[/tex]
Step 2. Rewrite the [tex]\( y \)[/tex]-terms as a completed square.
Notice that
[tex]$$
(25y + 8)^2 = 625y^2 + 400y + 64.
$$[/tex]
This is very similar to the [tex]\( y \)[/tex]-terms in our expression. To correct for the difference in the constant term, write:
[tex]$$
625y^2 + 400y - 36 = (25y + 8)^2 - 100,
$$[/tex]
since
[tex]$$
(25y + 8)^2 - 100 = \left(625y^2 + 400y + 64\right) - 100 = 625y^2 + 400y - 36.
$$[/tex]
Step 3. Rewrite the [tex]\( z \)[/tex]-terms as a completed square.
For the [tex]\( z \)[/tex]-terms, first factor out a negative sign:
[tex]$$
20z - z^2 = -\left(z^2 - 20z\right).
$$[/tex]
Now, complete the square for [tex]\( z^2 - 20z \)[/tex] by noticing that:
[tex]$$
(z - 10)^2 = z^2 - 20z + 100.
$$[/tex]
Thus, we can write:
[tex]$$
z^2 - 20z = (z - 10)^2 - 100,
$$[/tex]
and so
[tex]$$
20z - z^2 = -\left[(z - 10)^2 - 100\right] = 100 - (z - 10)^2.
$$[/tex]
Step 4. Combine the rewritten parts.
Substitute the rewritten forms into the original expression:
[tex]\[
\begin{aligned}
625y^2 + 400y - 36 + 20z - z^2 &= \Bigl[(25y + 8)^2 - 100\Bigr] + \Bigl[100 - (z-10)^2\Bigr] \\
&= (25y + 8)^2 - (z-10)^2.
\end{aligned}
\][/tex]
Now the expression is written as a difference of two squares.
Step 5. Factor the difference of squares.
Recall that a difference of two squares factors as:
[tex]$$
A^2 - B^2 = (A - B)(A + B).
$$[/tex]
Here, let:
[tex]$$
A = 25y + 8 \quad \text{and} \quad B = z - 10.
$$[/tex]
Thus, the expression factors as:
[tex]\[
\begin{aligned}
(25y + 8)^2 - (z-10)^2 &= \Bigl[(25y + 8) - (z-10)\Bigr]\, \Bigl[(25y + 8) + (z-10)\Bigr] \\
&= (25y + 8 - z + 10)(25y + 8 + z - 10) \\
&= (25y - z + 18)(25y + z - 2).
\end{aligned}
\][/tex]
Final Answer:
The factored form of the expression is
[tex]$$
\boxed{(25y - z + 18)(25y + z - 2)}.
$$[/tex]
Thank you for reading the article Simplify the expression tex 625y 2 400y 36 20z z 2 tex. We hope the information provided is useful and helps you understand this topic better. Feel free to explore more helpful content on our website!
- You are operating a recreational vessel less than 39 4 feet long on federally controlled waters Which of the following is a legal sound device
- Which step should a food worker complete to prevent cross contact when preparing and serving an allergen free meal A Clean and sanitize all surfaces
- For one month Siera calculated her hometown s average high temperature in degrees Fahrenheit She wants to convert that temperature from degrees Fahrenheit to degrees
Rewritten by : Jeany