High School

Thank you for visiting VI Write a polynomial in each tex square tex to complete each statement 34 tex 7p 2 7p 7p cdot square tex 35 tex 6a. This page is designed to guide you through key points and clear explanations related to the topic at hand. We aim to make your learning experience smooth, insightful, and informative. Dive in and discover the answers you're looking for!

VI. Write a polynomial in each [tex]$\square$[/tex] to complete each statement.

34. [tex]$7p^2 - 7p = 7p \cdot \square$[/tex]

35. [tex]$6a^2b + 24a^3 = 6a^2 \cdot \square$[/tex]

36. [tex]$35x^5y^2 + 21x^4y + 14x^3y^2 = 7x^3y \cdot \square$[/tex]

37. [tex]$10b^3 - 80b^5 - 5b^6 + 5b^7 = 5b^3 \cdot \square$[/tex]

38. [tex]$17x^5 - 51x^4 - 34x = \square \cdot (x^4 - 3x^3 - 2)$[/tex]

39. [tex]$\frac{2}{5}x - \frac{1}{2} = \frac{1}{10} \cdot \square$[/tex]

Answer :

Certainly! Let's tackle each problem step-by-step.

### Problem 34
[tex]\[ 7p^2 - 7p = 7p \square \][/tex]

First, let's rewrite the left-hand side:
[tex]\[ 7p^2 - 7p = 7(p^2 - p) \][/tex]

Therefore, the [tex]\(\square\)[/tex] should be:
[tex]\[ \square = p^2 - p \][/tex]

So the complete statement is:
[tex]\[ 7p^2 - 7p = 7p(p - 1) \][/tex]

### Problem 35
[tex]\[ 6a^2b + 24a^3 = 6a^2 \square \][/tex]

Factor out the greatest common factor (GCF) from the left side:
[tex]\[ 6a^2b + 24a^3 = 6a^2(b + 4a) \][/tex]

Therefore, the [tex]\(\square\)[/tex] should be:
[tex]\[ \square = b + 4a \][/tex]

So the complete statement is:
[tex]\[ 6a^2b + 24a^3 = 6a^2(b + 4a) \][/tex]

### Problem 36
[tex]\[ 35x^5y^2 + 21x^4y + 14x^3y^2 = 7x^3y \square \][/tex]

Factor out the GCF:
[tex]\[ 35x^5y^2 + 21x^4y + 14x^3y^2 = 7x^3y(5x^2y + 3x + 2y) \][/tex]

Therefore, the [tex]\(\square\)[/tex] should be:
[tex]\[ \square = 5x^2y + 3x + 2y \][/tex]

So the complete statement is:
[tex]\[ 35x^5y^2 + 21x^4y + 14x^3y^2 = 7x^3y(5x^2y + 3x + 2y) \][/tex]

### Problem 37
[tex]\[ 10b^3 - 80b^5 - 5b^6 + 5b^7 = 5b^3 \square \][/tex]

Factor out the GCF:
[tex]\[ 10b^3 - 80b^5 - 5b^6 + 5b^7 = 5b^3(2 - 16b^2 - b^3 + b^4) \][/tex]

Therefore, the [tex]\(\square\)[/tex] should be:
[tex]\[ \square = 2 - 16b^2 - b^3 + b^4 \][/tex]

So the complete statement is:
[tex]\[ 10b^3 - 80b^5 - 5b^6 + 5b^7 = 5b^3(2 - 16b^2 - b^3 + b^4) \][/tex]

### Problem 38
[tex]\[ 17x^5 - 51x^4 - 34x = \square (x^4 - 3x^3 - 2) \][/tex]

Notice that [tex]\( x = 0 \)[/tex] is a common root. Let’s factor out [tex]\( x \)[/tex]:
[tex]\[ 17x^5 - 51x^4 - 34x = x(17x^4 - 51x^3 - 34) \][/tex]

So [tex]\(\square\)[/tex] should be:
[tex]\[ \square = 17x \][/tex]

Therefore, the complete statement is:
[tex]\[ 17x^5 - 51x^4 - 34x = 17x(x^4 - 3x^3 - 2) \][/tex]

### Problem 39
[tex]\[ \frac{2}{5}x - \frac{1}{2} = \frac{1}{10} \square \][/tex]

Let's isolate [tex]\(\frac{1}{10} \square\)[/tex]:
[tex]\[ \frac{2}{5}x - \frac{1}{2} = \frac{1}{10} \square \][/tex]
Multiply both sides by 10 to clear the fraction:
[tex]\[ 4x - 5 = \square \][/tex]

So [tex]\(\square\)[/tex] should be:
[tex]\[ \square = 4x - 5 \][/tex]

Therefore, the complete statement is:
[tex]\[ \frac{2}{5}x - \frac{1}{2} = \frac{1}{10}(4x - 5) \][/tex]

### Summary of Answers
34. [tex]\( \square = p(p - 1) \)[/tex]
35. [tex]\( \square = b + 4a \)[/tex]
36. [tex]\( \square = 5x^2y + 3x + 2y \)[/tex]
37. [tex]\( \square = 2 - 16b^2 - b^3 + b^4 \)[/tex]
38. [tex]\( \square = 17x \)[/tex]
39. [tex]\( \square = 4x - 5 \)[/tex]

Thank you for reading the article VI Write a polynomial in each tex square tex to complete each statement 34 tex 7p 2 7p 7p cdot square tex 35 tex 6a. We hope the information provided is useful and helps you understand this topic better. Feel free to explore more helpful content on our website!

Rewritten by : Jeany