High School

Thank you for visiting In Exercises 39 46 determine whether the function is even odd or neither 39 tex h x 4x 7 tex 40 tex g x 2x. This page is designed to guide you through key points and clear explanations related to the topic at hand. We aim to make your learning experience smooth, insightful, and informative. Dive in and discover the answers you're looking for!

In Exercises 39-46, determine whether the function is even, odd, or neither.

39. [tex]h(x) = 4x^7[/tex]

40. [tex]g(x) = -2x^6 + x^2[/tex]

41. [tex]f(x) = x^4 + 3x^2 - 2[/tex]

42. [tex]f(x) = x^5 + 3x^3 - x[/tex]

43. [tex]g(x) = x^2 + 5x + 1[/tex]

44. [tex]f(x) = -x^3 + 2x - 9[/tex]

45. [tex]f(x) = x^4 - 12x^2[/tex]

46. [tex]h(x) = x^5 + 3x^4[/tex]

Answer :

To determine whether each function is even, odd, or neither, let's review the definitions:

- Even Function: A function [tex]\( f(x) \)[/tex] is even if [tex]\( f(-x) = f(x) \)[/tex] for all [tex]\( x \)[/tex]. Graphically, even functions are symmetrical about the y-axis.

- Odd Function: A function [tex]\( f(x) \)[/tex] is odd if [tex]\( f(-x) = -f(x) \)[/tex] for all [tex]\( x \)[/tex]. Graphically, odd functions have point symmetry about the origin.

Now, let's analyze each given function:

39. [tex]\( h(x) = 4x^7 \)[/tex]
- Since [tex]\( h(-x) = 4(-x)^7 = -4x^7 = -h(x) \)[/tex], the function is odd.

40. [tex]\( g(x) = -2x^6 + x^2 \)[/tex]
- Evaluate [tex]\( g(-x) = -2(-x)^6 + (-x)^2 = -2x^6 + x^2 = g(x) \)[/tex]. Therefore, the function is even.

41. [tex]\( f(x) = x^4 + 3x^2 - 2 \)[/tex]
- Evaluate [tex]\( f(-x) = (-x)^4 + 3(-x)^2 - 2 = x^4 + 3x^2 - 2 = f(x) \)[/tex]. Therefore, the function is even.

42. [tex]\( f(x) = x^5 + 3x^3 - x \)[/tex]
- Evaluate [tex]\( f(-x) = (-x)^5 + 3(-x)^3 - (-x) = -x^5 - 3x^3 + x = -f(x) \)[/tex]. Therefore, the function is odd.

43. [tex]\( g(x) = x^2 + 5x + 1 \)[/tex]
- Evaluate [tex]\( g(-x) = (-x)^2 + 5(-x) + 1 = x^2 - 5x + 1 \)[/tex], which is not equal to [tex]\( g(x) \)[/tex] or [tex]\(-g(x)\)[/tex]. Therefore, the function is neither.

44. [tex]\( f(x) = -x^3 + 2x - 9 \)[/tex]
- Evaluate [tex]\( f(-x) = -(-x)^3 + 2(-x) - 9 = x^3 - 2x - 9 \)[/tex]. This is not equal to [tex]\( f(x) \)[/tex] or [tex]\(-f(x)\)[/tex]. Therefore, the function is neither.

45. [tex]\( f(x) = x^4 - 12x^2 \)[/tex]
- Evaluate [tex]\( f(-x) = (-x)^4 - 12(-x)^2 = x^4 - 12x^2 = f(x) \)[/tex]. Therefore, the function is even.

46. [tex]\( h(x) = x^5 + 3x^4 \)[/tex]
- Evaluate [tex]\( h(-x) = (-x)^5 + 3(-x)^4 = -x^5 + 3x^4 \)[/tex]. This is not equal to [tex]\( h(x) \)[/tex] or [tex]\(-h(x)\)[/tex]. Therefore, the function is neither.

These analyses show whether each function is even, odd, or neither based on their properties.

Thank you for reading the article In Exercises 39 46 determine whether the function is even odd or neither 39 tex h x 4x 7 tex 40 tex g x 2x. We hope the information provided is useful and helps you understand this topic better. Feel free to explore more helpful content on our website!

Rewritten by : Jeany