College

Thank you for visiting DIRECTION III WORKOUT 36 Let tex f x x 3 2x 2 kx 6 tex where tex k tex is a constant If tex x. This page is designed to guide you through key points and clear explanations related to the topic at hand. We aim to make your learning experience smooth, insightful, and informative. Dive in and discover the answers you're looking for!

**DIRECTION III: WORKOUT**

36. Let [tex]f(x) = x^3 - 2x^2 + kx + 6[/tex], where [tex]k[/tex] is a constant. If [tex]x - 3[/tex] is a factor of [tex]f(x)[/tex], then factorize [tex]f(x)[/tex] into three linear factors and find the remainder when [tex]f(x)[/tex] is divided by [tex]x + 3[/tex].

37. A function [tex]f(x) = x^3 + x^2 - x + k[/tex], where [tex]k[/tex] is a constant. Given that [tex]x - k[/tex] is a factor of [tex]f(x)[/tex], determine the possible values of [tex]k[/tex].

38. Let [tex]f(x) = ax^3 - x^2 - 5x + b[/tex], where [tex]a[/tex] and [tex]b[/tex] are constants. When [tex]f(x)[/tex] is divided by [tex]x - 2[/tex], the remainder is 36. When [tex]f(x)[/tex] is divided by [tex]x + 2[/tex], the remainder is 40. Find the values of [tex]a[/tex] and [tex]b[/tex].

39. When [tex]f(x) = x^5 - 6x + 2[/tex] is divided by [tex]x - c[/tex], the remainder is 7. Find the possible value of [tex]c[/tex].

40. Let [tex]p(n) = n^3 + 2n^2 - 23n + k[/tex]. If you divide [tex]p(n)[/tex] by [tex]n + 6[/tex], the remainder is -1. What is the remainder if you divide [tex]p(n)[/tex] by [tex]n - 5[/tex]?

41. Find a polynomial [tex]f(x)[/tex] that has roots 0, 1, and -1 with respective multiplicities 3, 2, and 1 such that [tex]f(2) = 24[/tex].

42. Using the remainder theorem, find the remainder when [tex]f(x)[/tex] is divided by [tex]g(x)[/tex].
[tex]f(x) = 4x^3 - 12x^2 + 14x - 3[/tex]; [tex]g(x) = 2x - 1[/tex].

Answer :

To find the remainder when [tex]\( f(x) = 4x^3 - 12x^2 + 14x - 3 \)[/tex] is divided by [tex]\( g(x) = 2x - 1 \)[/tex], we can use the Remainder Theorem.

The Remainder Theorem states that if a polynomial [tex]\( f(x) \)[/tex] is divided by a linear divisor of the form [tex]\( x - c \)[/tex], then the remainder of this division is equal to [tex]\( f(c) \)[/tex].

In this case, the divisor [tex]\( g(x) = 2x - 1 \)[/tex] can be rewritten in the form of [tex]\( x - c \)[/tex] by setting it equal to zero:

[tex]\[ 2x - 1 = 0 \][/tex]

Solving for [tex]\( x \)[/tex], we get:

[tex]\[ 2x = 1 \][/tex]

[tex]\[ x = \frac{1}{2} \][/tex]

So, to find the remainder, we evaluate [tex]\( f(x) \)[/tex] at [tex]\( x = \frac{1}{2} \)[/tex]:

[tex]\[ f\left(\frac{1}{2}\right) = 4\left(\frac{1}{2}\right)^3 - 12\left(\frac{1}{2}\right)^2 + 14\left(\frac{1}{2}\right) - 3 \][/tex]

Calculating each term:

1. [tex]\( 4\left(\frac{1}{2}\right)^3 = 4 \times \frac{1}{8} = \frac{1}{2} \)[/tex]

2. [tex]\(- 12\left(\frac{1}{2}\right)^2 = -12 \times \frac{1}{4} = -3\)[/tex]

3. [tex]\( 14\left(\frac{1}{2}\right) = 14 \times \frac{1}{2} = 7 \)[/tex]

4. [tex]\(- 3\)[/tex]

Adding these up:

[tex]\[\frac{1}{2} - 3 + 7 - 3 = \frac{1}{2} + 4 - 3 = \frac{1}{2} + 1 = \frac{3}{2} \][/tex]

Thus, the remainder when [tex]\( f(x) \)[/tex] is divided by [tex]\( g(x) = 2x - 1 \)[/tex] is [tex]\(\frac{3}{2}\)[/tex].

Thank you for reading the article DIRECTION III WORKOUT 36 Let tex f x x 3 2x 2 kx 6 tex where tex k tex is a constant If tex x. We hope the information provided is useful and helps you understand this topic better. Feel free to explore more helpful content on our website!

Rewritten by : Jeany