Thank you for visiting Divide using long division tex frac 3x 5 22x 4 13x 3 39x 2 14x 6 x 3 6x 2 3x 5 tex Show work. This page is designed to guide you through key points and clear explanations related to the topic at hand. We aim to make your learning experience smooth, insightful, and informative. Dive in and discover the answers you're looking for!
Answer :
Sure! Let's perform polynomial long division to divide [tex]\(-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6\)[/tex] by [tex]\(x^3 + 6x^2 - 3x - 5\)[/tex].
### Step-by-Step Solution:
1. Setup the Division:
Write the dividend [tex]\(-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6\)[/tex] under the division bar and the divisor [tex]\(x^3 + 6x^2 - 3x - 5\)[/tex] outside.
2. Divide the Leading Terms:
Divide the leading term of the dividend, [tex]\(-3x^5\)[/tex], by the leading term of the divisor, [tex]\(x^3\)[/tex]:
[tex]\[
\frac{-3x^5}{x^3} = -3x^2
\][/tex]
This is the first term of the quotient.
3. Multiply and Subtract:
Multiply the entire divisor by [tex]\(-3x^2\)[/tex] and subtract the result from the original dividend:
[tex]\[
(-3x^2) \cdot (x^3 + 6x^2 - 3x - 5) = -3x^5 - 18x^4 + 9x^3 + 15x^2
\][/tex]
Subtract:
[tex]\[
(-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6) - (-3x^5 - 18x^4 + 9x^3 + 15x^2)
\][/tex]
This simplifies to:
[tex]\[
-4x^4 - 22x^3 + 24x^2 + 14x - 6
\][/tex]
4. Repeat the Process:
- Divide the new leading term, [tex]\(-4x^4\)[/tex], by [tex]\(x^3\)[/tex]:
[tex]\[
\frac{-4x^4}{x^3} = -4x
\][/tex]
Add [tex]\(-4x\)[/tex] to the quotient.
- Multiply the entire divisor by [tex]\(-4x\)[/tex] and subtract:
[tex]\[
(-4x) \cdot (x^3 + 6x^2 - 3x - 5) = -4x^4 - 24x^3 + 12x^2 + 20x
\][/tex]
Subtract:
[tex]\[
(-4x^4 - 22x^3 + 24x^2 + 14x - 6) - (-4x^4 - 24x^3 + 12x^2 + 20x)
\][/tex]
This simplifies to:
[tex]\[
2x^3 + 12x^2 - 6x - 6
\][/tex]
5. Continue Until Degree is Lower:
- Divide the leading term [tex]\(2x^3\)[/tex] by [tex]\(x^3\)[/tex]:
[tex]\[
\frac{2x^3}{x^3} = 2
\][/tex]
Add [tex]\(2\)[/tex] to the quotient.
- Multiply the entire divisor by [tex]\(2\)[/tex] and subtract:
[tex]\[
2 \cdot (x^3 + 6x^2 - 3x - 5) = 2x^3 + 12x^2 - 6x - 10
\][/tex]
Subtract:
[tex]\[
(2x^3 + 12x^2 - 6x - 6) - (2x^3 + 12x^2 - 6x - 10)
\][/tex]
This simplifies to:
[tex]\[
4
\][/tex]
6. Result of Division:
- The quotient is [tex]\(-3x^2 - 4x + 2\)[/tex].
- The remainder is [tex]\(4\)[/tex].
### Final Answer:
The result of the long division is:
[tex]\[
-3x^2 - 4x + 2 + \frac{4}{x^3 + 6x^2 - 3x - 5}
\][/tex]
And that's how you perform polynomial long division step-by-step!
### Step-by-Step Solution:
1. Setup the Division:
Write the dividend [tex]\(-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6\)[/tex] under the division bar and the divisor [tex]\(x^3 + 6x^2 - 3x - 5\)[/tex] outside.
2. Divide the Leading Terms:
Divide the leading term of the dividend, [tex]\(-3x^5\)[/tex], by the leading term of the divisor, [tex]\(x^3\)[/tex]:
[tex]\[
\frac{-3x^5}{x^3} = -3x^2
\][/tex]
This is the first term of the quotient.
3. Multiply and Subtract:
Multiply the entire divisor by [tex]\(-3x^2\)[/tex] and subtract the result from the original dividend:
[tex]\[
(-3x^2) \cdot (x^3 + 6x^2 - 3x - 5) = -3x^5 - 18x^4 + 9x^3 + 15x^2
\][/tex]
Subtract:
[tex]\[
(-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6) - (-3x^5 - 18x^4 + 9x^3 + 15x^2)
\][/tex]
This simplifies to:
[tex]\[
-4x^4 - 22x^3 + 24x^2 + 14x - 6
\][/tex]
4. Repeat the Process:
- Divide the new leading term, [tex]\(-4x^4\)[/tex], by [tex]\(x^3\)[/tex]:
[tex]\[
\frac{-4x^4}{x^3} = -4x
\][/tex]
Add [tex]\(-4x\)[/tex] to the quotient.
- Multiply the entire divisor by [tex]\(-4x\)[/tex] and subtract:
[tex]\[
(-4x) \cdot (x^3 + 6x^2 - 3x - 5) = -4x^4 - 24x^3 + 12x^2 + 20x
\][/tex]
Subtract:
[tex]\[
(-4x^4 - 22x^3 + 24x^2 + 14x - 6) - (-4x^4 - 24x^3 + 12x^2 + 20x)
\][/tex]
This simplifies to:
[tex]\[
2x^3 + 12x^2 - 6x - 6
\][/tex]
5. Continue Until Degree is Lower:
- Divide the leading term [tex]\(2x^3\)[/tex] by [tex]\(x^3\)[/tex]:
[tex]\[
\frac{2x^3}{x^3} = 2
\][/tex]
Add [tex]\(2\)[/tex] to the quotient.
- Multiply the entire divisor by [tex]\(2\)[/tex] and subtract:
[tex]\[
2 \cdot (x^3 + 6x^2 - 3x - 5) = 2x^3 + 12x^2 - 6x - 10
\][/tex]
Subtract:
[tex]\[
(2x^3 + 12x^2 - 6x - 6) - (2x^3 + 12x^2 - 6x - 10)
\][/tex]
This simplifies to:
[tex]\[
4
\][/tex]
6. Result of Division:
- The quotient is [tex]\(-3x^2 - 4x + 2\)[/tex].
- The remainder is [tex]\(4\)[/tex].
### Final Answer:
The result of the long division is:
[tex]\[
-3x^2 - 4x + 2 + \frac{4}{x^3 + 6x^2 - 3x - 5}
\][/tex]
And that's how you perform polynomial long division step-by-step!
Thank you for reading the article Divide using long division tex frac 3x 5 22x 4 13x 3 39x 2 14x 6 x 3 6x 2 3x 5 tex Show work. We hope the information provided is useful and helps you understand this topic better. Feel free to explore more helpful content on our website!
- You are operating a recreational vessel less than 39 4 feet long on federally controlled waters Which of the following is a legal sound device
- Which step should a food worker complete to prevent cross contact when preparing and serving an allergen free meal A Clean and sanitize all surfaces
- For one month Siera calculated her hometown s average high temperature in degrees Fahrenheit She wants to convert that temperature from degrees Fahrenheit to degrees
Rewritten by : Jeany