College

Thank you for visiting 1 Let tex f x 3x 4 2 tex What is the average rate of change on the interval tex 2 3 tex A 39. This page is designed to guide you through key points and clear explanations related to the topic at hand. We aim to make your learning experience smooth, insightful, and informative. Dive in and discover the answers you're looking for!

1. Let [tex]f(x) = 3x^4 + 2[/tex]. What is the average rate of change on the interval [tex][-2, 3][/tex]?

A. 39
B. 59
C. 243
D. 45

2. What is the instantaneous rate of change of [tex]f(x) = 2x^3 - 3[/tex] at [tex]x = 2[/tex]?

A. 24
B. 21
C. 27
D. 3

3. Let [tex]y = (x^3 + 3)^2[/tex]. Then [tex]\frac{d y}{d x} =[/tex]

A. [tex]6x^7 + 18x^2 + 18x[/tex]
B. [tex]6x^5 + 18x^2[/tex]
C. [tex]6x^5 + 18x^2 + 18[/tex]
D. [tex]x^5 + 6x - 18[/tex]

4. Let [tex]f(x) = x^3 + 3x[/tex]. Then [tex]f^{\prime}(2) =[/tex]

A. 12
B. 15
C. 0
D. 14

5. What is the instantaneous rate of change of [tex]f(x) = 6x^2 - 3[/tex] at [tex]x = 2[/tex]?

A. 24
B. 21
C. 27
D. 3

6. If [tex]f(5) = -2[/tex], [tex]f^{\prime}(5) = 2[/tex], [tex]g^{\prime}(4) = 5[/tex], [tex]g(4) = 3[/tex] and [tex]F(x) = f(x^2 + 4x)g(3x + 1)[/tex], then what is [tex]F^{\prime}(1)[/tex]?

A. 6
B. 6
C. 36

Answer :

Below is a complete step‐by‐step explanation for solving each part of the problem.

─────────────────────────────
. Average Rate of Change of
[tex]\[
f(x)=3x^4+2
\][/tex]
on the interval [tex]\([-2,3]\)[/tex]:

1. First compute the value of the function at the endpoints.

 • When [tex]\( x=-2 \)[/tex]:
[tex]\[
f(-2)=3(-2)^4+2=3\cdot16+2=48+2=50.
\][/tex]

 • When [tex]\( x=3 \)[/tex]:
[tex]\[
f(3)=3(3)^4+2=3\cdot81+2=243+2=245.
\][/tex]

2. The average rate of change over [tex]\([-2,3]\)[/tex] is given by:
[tex]\[
\text{Average Rate} = \frac{f(3)-f(-2)}{3-(-2)}=\frac{245-50}{5}=\frac{195}{5}=39.
\][/tex]

─────────────────────────────
. Instantaneous Rate of Change of
[tex]\[
f(x)=2x^3-3
\][/tex]
at [tex]\(x=2\)[/tex]:

1. The derivative [tex]\(f'(x)\)[/tex] is:
[tex]\[
f'(x)=\frac{d}{dx}\left(2x^3-3\right)=6x^2.
\][/tex]

2. Evaluating at [tex]\(x=2\)[/tex]:
[tex]\[
f'(2)=6(2)^2=6\cdot4=24.
\][/tex]

─────────────────────────────
. Derivative of
[tex]\[
y=(x^3+3)^2
\][/tex]

1. Let
[tex]\[
u(x)=x^3+3.
\][/tex]
Then [tex]\(y=u^2\)[/tex].

2. Using the chain rule:
[tex]\[
\frac{dy}{dx}=2u\cdot\frac{du}{dx}.
\][/tex]

3. Compute [tex]\(u'(x)\)[/tex]:
[tex]\[
u'(x)=\frac{d}{dx}\left(x^3+3\right)=3x^2.
\][/tex]

4. Substitute back:
[tex]\[
\frac{dy}{dx}=2(x^3+3)\cdot 3x^2=6x^2(x^3+3)=6x^5+18x^2.
\][/tex]

─────────────────────────────
. Instantaneous Rate of Change of
[tex]\[
f(x)=x^3+3x
\][/tex]
at [tex]\(x=2\)[/tex]:

1. Compute the derivative:
[tex]\[
f'(x)=\frac{d}{dx}\left(x^3+3x\right)=3x^2+3.
\][/tex]

2. Evaluate at [tex]\(x=2\)[/tex]:
[tex]\[
f'(2)=3(2)^2+3=3\cdot4+3=12+3=15.
\][/tex]

─────────────────────────────
. Instantaneous Rate of Change of
[tex]\[
f(x)=6x^2-3
\][/tex]
at [tex]\(x=2\)[/tex]:

1. The derivative is:
[tex]\[
f'(x)=\frac{d}{dx}\left(6x^2-3\right)=12x.
\][/tex]

2. Evaluating at [tex]\(x=2\)[/tex]:
[tex]\[
f'(2)=12\cdot2=24.
\][/tex]

─────────────────────────────
. Derivative of
[tex]\[
F(x)=f(x^2+4x) \cdot g(3x+1)
\][/tex]
at [tex]\(x=1\)[/tex], given that:

[tex]\[
f(5)=-2,\quad f'(5)=2,\quad g(4)=3,\quad g'(4)=5.
\][/tex]

1. Define two functions:
  – [tex]\(u(x)=x^2+4x\)[/tex] so that [tex]\(f\)[/tex] is evaluated at [tex]\(u(x)\)[/tex].
  – [tex]\(v(x)=3x+1\)[/tex] so that [tex]\(g\)[/tex] is evaluated at [tex]\(v(x)\)[/tex].

2. At [tex]\(x=1\)[/tex]:
  • [tex]\(u(1)=1^2+4(1)=1+4=5\)[/tex].
  • [tex]\(v(1)=3(1)+1=3+1=4\)[/tex].

3. Compute the derivatives:
  • For [tex]\(u(x)\)[/tex]:
[tex]\[
u'(x)=2x+4\quad\text{thus}\quad u'(1)=2\cdot1+4=6.
\][/tex]
  • For [tex]\(v(x)\)[/tex]:
[tex]\[
v'(x)=3\quad\text{(a constant)}.
\][/tex]

4. Using the product rule and chain rule, the derivative [tex]\(F'(x)\)[/tex] is:
[tex]\[
F'(x)=f'(u(x))\cdot u'(x)\cdot g(v(x)) + f(u(x))\cdot g'(v(x))\cdot v'(x).
\][/tex]

5. Evaluating at [tex]\(x=1\)[/tex]:
[tex]\[
F'(1)=f'(5)\cdot u'(1)\cdot g(4) + f(5)\cdot g'(4)\cdot v'(1).
\][/tex]
Substitute the given values:
[tex]\[
F'(1)=2\cdot6\cdot3+(-2)\cdot5\cdot3=36-30=6.
\][/tex]

─────────────────────────────
Summary of Answers:

1. The average rate of change is [tex]\(\boxed{39}\)[/tex].

2. The instantaneous rate of change for [tex]\(f(x)=2x^3-3\)[/tex] at [tex]\(x=2\)[/tex] is [tex]\(\boxed{24}\)[/tex].

3. The derivative of [tex]\(y=(x^3+3)^2\)[/tex] is [tex]\(\boxed{6x^5+18x^2}\)[/tex].

4. The instantaneous rate of change for [tex]\(f(x)=x^3+3x\)[/tex] at [tex]\(x=2\)[/tex] is [tex]\(\boxed{15}\)[/tex].

5. The instantaneous rate of change for [tex]\(f(x)=6x^2-3\)[/tex] at [tex]\(x=2\)[/tex] is [tex]\(\boxed{24}\)[/tex].

6. The derivative of [tex]\(F(x)=f(x^2+4x)g(3x+1)\)[/tex] at [tex]\(x=1\)[/tex] is [tex]\(\boxed{6}\)[/tex].

Thank you for reading the article 1 Let tex f x 3x 4 2 tex What is the average rate of change on the interval tex 2 3 tex A 39. We hope the information provided is useful and helps you understand this topic better. Feel free to explore more helpful content on our website!

Rewritten by : Jeany