Thank you for visiting Divide using long division frac 3x 5 22x 4 13x 3 39x 2 14x 6 x 3 6x 2 3x 5. This page is designed to guide you through key points and clear explanations related to the topic at hand. We aim to make your learning experience smooth, insightful, and informative. Dive in and discover the answers you're looking for!
Answer :
Sure! Let's solve this polynomial division step-by-step using long division.
We need to divide [tex]\(-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6\)[/tex] by [tex]\(x^3 + 6x^2 - 3x - 5\)[/tex].
### Step 1: Set up the division
Write the division as a long division problem, with the dividend [tex]\((-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6)\)[/tex] under the division symbol and the divisor [tex]\((x^3 + 6x^2 - 3x - 5)\)[/tex] outside.
### Step 2: Divide the leading terms
Divide the leading term of the dividend [tex]\(-3x^5\)[/tex] by the leading term of the divisor [tex]\(x^3\)[/tex]:
[tex]\[
\frac{-3x^5}{x^3} = -3x^2
\][/tex]
This is the first term of the quotient.
### Step 3: Multiply and subtract
Multiply the entire divisor [tex]\((x^3 + 6x^2 - 3x - 5)\)[/tex] by [tex]\(-3x^2\)[/tex], and subtract this from the current dividend:
1. [tex]\(-3x^2 \times x^3 = -3x^5\)[/tex]
2. [tex]\(-3x^2 \times 6x^2 = -18x^4\)[/tex]
3. [tex]\(-3x^2 \times (-3x) = 9x^3\)[/tex]
4. [tex]\(-3x^2 \times (-5) = 15x^2\)[/tex]
Now perform the subtraction:
[tex]\[
(-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6) - (-3x^5 - 18x^4 + 9x^3 + 15x^2)
\][/tex]
This simplifies to:
[tex]\[
0x^5 - 4x^4 - 22x^3 + 24x^2 + 14x - 6
\][/tex]
### Step 4: Repeat the process
Now, divide the new leading term [tex]\(-4x^4\)[/tex] by [tex]\(x^3\)[/tex]:
[tex]\[
\frac{-4x^4}{x^3} = -4x
\][/tex]
This is the next term of the quotient.
Multiply the divisor by [tex]\(-4x\)[/tex], and subtract:
1. [tex]\(-4x \times x^3 = -4x^4\)[/tex]
2. [tex]\(-4x \times 6x^2 = -24x^3\)[/tex]
3. [tex]\(-4x \times (-3x) = 12x^2\)[/tex]
4. [tex]\(-4x \times (-5) = 20x\)[/tex]
Subtract:
[tex]\[
(-4x^4 - 22x^3 + 24x^2 + 14x - 6) - (-4x^4 - 24x^3 + 12x^2 + 20x)
\][/tex]
Simplifies to:
[tex]\[
0x^4 + 2x^3 + 12x^2 - 6x - 6
\][/tex]
### Step 5: Divide again
Divide [tex]\(2x^3\)[/tex] by [tex]\(x^3\)[/tex]:
[tex]\[
\frac{2x^3}{x^3} = 2
\][/tex]
This is the next term of the quotient.
Multiply the divisor by 2, and subtract:
1. [tex]\(2 \times x^3 = 2x^3\)[/tex]
2. [tex]\(2 \times 6x^2 = 12x^2\)[/tex]
3. [tex]\(2 \times (-3x) = -6x\)[/tex]
4. [tex]\(2 \times (-5) = -10\)[/tex]
Subtract:
[tex]\[
(2x^3 + 12x^2 - 6x - 6) - (2x^3 + 12x^2 - 6x - 10)
\][/tex]
Simplifies to:
[tex]\[
0x^3 + 0x^2 + 0x + 4
\][/tex]
### Conclusion
The quotient is [tex]\(-3x^2 - 4x + 2\)[/tex] and the remainder is [tex]\(4\)[/tex].
So, the result of the division is:
[tex]\[
-3x^2 - 4x + 2 + \frac{4}{x^3 + 6x^2 - 3x - 5}
\][/tex]
We need to divide [tex]\(-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6\)[/tex] by [tex]\(x^3 + 6x^2 - 3x - 5\)[/tex].
### Step 1: Set up the division
Write the division as a long division problem, with the dividend [tex]\((-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6)\)[/tex] under the division symbol and the divisor [tex]\((x^3 + 6x^2 - 3x - 5)\)[/tex] outside.
### Step 2: Divide the leading terms
Divide the leading term of the dividend [tex]\(-3x^5\)[/tex] by the leading term of the divisor [tex]\(x^3\)[/tex]:
[tex]\[
\frac{-3x^5}{x^3} = -3x^2
\][/tex]
This is the first term of the quotient.
### Step 3: Multiply and subtract
Multiply the entire divisor [tex]\((x^3 + 6x^2 - 3x - 5)\)[/tex] by [tex]\(-3x^2\)[/tex], and subtract this from the current dividend:
1. [tex]\(-3x^2 \times x^3 = -3x^5\)[/tex]
2. [tex]\(-3x^2 \times 6x^2 = -18x^4\)[/tex]
3. [tex]\(-3x^2 \times (-3x) = 9x^3\)[/tex]
4. [tex]\(-3x^2 \times (-5) = 15x^2\)[/tex]
Now perform the subtraction:
[tex]\[
(-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6) - (-3x^5 - 18x^4 + 9x^3 + 15x^2)
\][/tex]
This simplifies to:
[tex]\[
0x^5 - 4x^4 - 22x^3 + 24x^2 + 14x - 6
\][/tex]
### Step 4: Repeat the process
Now, divide the new leading term [tex]\(-4x^4\)[/tex] by [tex]\(x^3\)[/tex]:
[tex]\[
\frac{-4x^4}{x^3} = -4x
\][/tex]
This is the next term of the quotient.
Multiply the divisor by [tex]\(-4x\)[/tex], and subtract:
1. [tex]\(-4x \times x^3 = -4x^4\)[/tex]
2. [tex]\(-4x \times 6x^2 = -24x^3\)[/tex]
3. [tex]\(-4x \times (-3x) = 12x^2\)[/tex]
4. [tex]\(-4x \times (-5) = 20x\)[/tex]
Subtract:
[tex]\[
(-4x^4 - 22x^3 + 24x^2 + 14x - 6) - (-4x^4 - 24x^3 + 12x^2 + 20x)
\][/tex]
Simplifies to:
[tex]\[
0x^4 + 2x^3 + 12x^2 - 6x - 6
\][/tex]
### Step 5: Divide again
Divide [tex]\(2x^3\)[/tex] by [tex]\(x^3\)[/tex]:
[tex]\[
\frac{2x^3}{x^3} = 2
\][/tex]
This is the next term of the quotient.
Multiply the divisor by 2, and subtract:
1. [tex]\(2 \times x^3 = 2x^3\)[/tex]
2. [tex]\(2 \times 6x^2 = 12x^2\)[/tex]
3. [tex]\(2 \times (-3x) = -6x\)[/tex]
4. [tex]\(2 \times (-5) = -10\)[/tex]
Subtract:
[tex]\[
(2x^3 + 12x^2 - 6x - 6) - (2x^3 + 12x^2 - 6x - 10)
\][/tex]
Simplifies to:
[tex]\[
0x^3 + 0x^2 + 0x + 4
\][/tex]
### Conclusion
The quotient is [tex]\(-3x^2 - 4x + 2\)[/tex] and the remainder is [tex]\(4\)[/tex].
So, the result of the division is:
[tex]\[
-3x^2 - 4x + 2 + \frac{4}{x^3 + 6x^2 - 3x - 5}
\][/tex]
Thank you for reading the article Divide using long division frac 3x 5 22x 4 13x 3 39x 2 14x 6 x 3 6x 2 3x 5. We hope the information provided is useful and helps you understand this topic better. Feel free to explore more helpful content on our website!
- You are operating a recreational vessel less than 39 4 feet long on federally controlled waters Which of the following is a legal sound device
- Which step should a food worker complete to prevent cross contact when preparing and serving an allergen free meal A Clean and sanitize all surfaces
- For one month Siera calculated her hometown s average high temperature in degrees Fahrenheit She wants to convert that temperature from degrees Fahrenheit to degrees
Rewritten by : Jeany