Thank you for visiting Divide using long division frac 3x 5 22x 4 13x 3 39x 2 14x 6 x 3 6x 2 3x 5 SHOW WORK. This page is designed to guide you through key points and clear explanations related to the topic at hand. We aim to make your learning experience smooth, insightful, and informative. Dive in and discover the answers you're looking for!
Answer :
Of course! Let's divide the polynomial [tex]\(-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6\)[/tex] by [tex]\(x^3 + 6x^2 - 3x - 5\)[/tex] using long division, step-by-step.
### Step 1: Set up the division
Write the division in long division format. The dividend is [tex]\(-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6\)[/tex] and the divisor is [tex]\(x^3 + 6x^2 - 3x - 5\)[/tex].
### Step 2: Divide the leading terms
Divide the first term of the dividend by the first term of the divisor:
[tex]\[
\frac{-3x^5}{x^3} = -3x^2
\][/tex]
This will be the first term of the quotient.
### Step 3: Multiply and subtract
Multiply the entire divisor by [tex]\(-3x^2\)[/tex] and subtract the result from the dividend:
[tex]\[
(-3x^2)(x^3 + 6x^2 - 3x - 5) = -3x^5 - 18x^4 + 9x^3 + 15x^2
\][/tex]
Subtract from the dividend:
[tex]\[
(-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6) - (-3x^5 - 18x^4 + 9x^3 + 15x^2)
\][/tex]
This gives:
[tex]\[
0x^5 - 4x^4 - 22x^3 + 24x^2 + 14x - 6
\][/tex]
### Step 4: Repeat the process
Now take this result as the new dividend and repeat the process.
#### Divide the leading terms:
[tex]\[
\frac{-4x^4}{x^3} = -4x
\][/tex]
Add [tex]\(-4x\)[/tex] to the quotient.
#### Multiply and subtract:
[tex]\[
(-4x)(x^3 + 6x^2 - 3x - 5) = -4x^4 - 24x^3 + 12x^2 + 20x
\][/tex]
Subtract:
[tex]\[
(-4x^4 - 22x^3 + 24x^2 + 14x - 6) - (-4x^4 - 24x^3 + 12x^2 + 20x)
\][/tex]
This gives:
[tex]\[
0x^4 + 2x^3 + 12x^2 - 6x - 6
\][/tex]
### Step 5: Divide again
#### Divide the leading terms:
[tex]\[
\frac{2x^3}{x^3} = 2
\][/tex]
Add [tex]\(2\)[/tex] to the quotient.
#### Multiply and subtract:
[tex]\[
2(x^3 + 6x^2 - 3x - 5) = 2x^3 + 12x^2 - 6x - 10
\][/tex]
Subtract:
[tex]\[
(2x^3 + 12x^2 - 6x - 6) - (2x^3 + 12x^2 - 6x - 10)
\][/tex]
This leaves:
[tex]\[
0x^3 + 0x^2 + 0x + 4 \quad \text{(remainder)}
\][/tex]
### Conclusion
The quotient is [tex]\(-3x^2 - 4x + 2\)[/tex] and the remainder is [tex]\(4\)[/tex]. Therefore, the division can be expressed as:
[tex]\[
\frac{-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6}{x^3 + 6x^2 - 3x - 5} = -3x^2 - 4x + 2 + \frac{4}{x^3 + 6x^2 - 3x - 5}
\][/tex]
### Step 1: Set up the division
Write the division in long division format. The dividend is [tex]\(-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6\)[/tex] and the divisor is [tex]\(x^3 + 6x^2 - 3x - 5\)[/tex].
### Step 2: Divide the leading terms
Divide the first term of the dividend by the first term of the divisor:
[tex]\[
\frac{-3x^5}{x^3} = -3x^2
\][/tex]
This will be the first term of the quotient.
### Step 3: Multiply and subtract
Multiply the entire divisor by [tex]\(-3x^2\)[/tex] and subtract the result from the dividend:
[tex]\[
(-3x^2)(x^3 + 6x^2 - 3x - 5) = -3x^5 - 18x^4 + 9x^3 + 15x^2
\][/tex]
Subtract from the dividend:
[tex]\[
(-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6) - (-3x^5 - 18x^4 + 9x^3 + 15x^2)
\][/tex]
This gives:
[tex]\[
0x^5 - 4x^4 - 22x^3 + 24x^2 + 14x - 6
\][/tex]
### Step 4: Repeat the process
Now take this result as the new dividend and repeat the process.
#### Divide the leading terms:
[tex]\[
\frac{-4x^4}{x^3} = -4x
\][/tex]
Add [tex]\(-4x\)[/tex] to the quotient.
#### Multiply and subtract:
[tex]\[
(-4x)(x^3 + 6x^2 - 3x - 5) = -4x^4 - 24x^3 + 12x^2 + 20x
\][/tex]
Subtract:
[tex]\[
(-4x^4 - 22x^3 + 24x^2 + 14x - 6) - (-4x^4 - 24x^3 + 12x^2 + 20x)
\][/tex]
This gives:
[tex]\[
0x^4 + 2x^3 + 12x^2 - 6x - 6
\][/tex]
### Step 5: Divide again
#### Divide the leading terms:
[tex]\[
\frac{2x^3}{x^3} = 2
\][/tex]
Add [tex]\(2\)[/tex] to the quotient.
#### Multiply and subtract:
[tex]\[
2(x^3 + 6x^2 - 3x - 5) = 2x^3 + 12x^2 - 6x - 10
\][/tex]
Subtract:
[tex]\[
(2x^3 + 12x^2 - 6x - 6) - (2x^3 + 12x^2 - 6x - 10)
\][/tex]
This leaves:
[tex]\[
0x^3 + 0x^2 + 0x + 4 \quad \text{(remainder)}
\][/tex]
### Conclusion
The quotient is [tex]\(-3x^2 - 4x + 2\)[/tex] and the remainder is [tex]\(4\)[/tex]. Therefore, the division can be expressed as:
[tex]\[
\frac{-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6}{x^3 + 6x^2 - 3x - 5} = -3x^2 - 4x + 2 + \frac{4}{x^3 + 6x^2 - 3x - 5}
\][/tex]
Thank you for reading the article Divide using long division frac 3x 5 22x 4 13x 3 39x 2 14x 6 x 3 6x 2 3x 5 SHOW WORK. We hope the information provided is useful and helps you understand this topic better. Feel free to explore more helpful content on our website!
- You are operating a recreational vessel less than 39 4 feet long on federally controlled waters Which of the following is a legal sound device
- Which step should a food worker complete to prevent cross contact when preparing and serving an allergen free meal A Clean and sanitize all surfaces
- For one month Siera calculated her hometown s average high temperature in degrees Fahrenheit She wants to convert that temperature from degrees Fahrenheit to degrees
Rewritten by : Jeany