College

Thank you for visiting Divide using long division frac 3x 5 22x 4 13x 3 39x 2 14x 6 x 3 6x 2 3x 5 SHOW WORK. This page is designed to guide you through key points and clear explanations related to the topic at hand. We aim to make your learning experience smooth, insightful, and informative. Dive in and discover the answers you're looking for!

Divide using long division.

\[ \frac{-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6}{x^3 + 6x^2 - 3x - 5} \]

(SHOW WORK)

Answer :

Of course! Let's divide the polynomial [tex]\(-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6\)[/tex] by [tex]\(x^3 + 6x^2 - 3x - 5\)[/tex] using long division, step-by-step.

### Step 1: Set up the division

Write the division in long division format. The dividend is [tex]\(-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6\)[/tex] and the divisor is [tex]\(x^3 + 6x^2 - 3x - 5\)[/tex].

### Step 2: Divide the leading terms

Divide the first term of the dividend by the first term of the divisor:

[tex]\[
\frac{-3x^5}{x^3} = -3x^2
\][/tex]

This will be the first term of the quotient.

### Step 3: Multiply and subtract

Multiply the entire divisor by [tex]\(-3x^2\)[/tex] and subtract the result from the dividend:

[tex]\[
(-3x^2)(x^3 + 6x^2 - 3x - 5) = -3x^5 - 18x^4 + 9x^3 + 15x^2
\][/tex]

Subtract from the dividend:

[tex]\[
(-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6) - (-3x^5 - 18x^4 + 9x^3 + 15x^2)
\][/tex]

This gives:

[tex]\[
0x^5 - 4x^4 - 22x^3 + 24x^2 + 14x - 6
\][/tex]

### Step 4: Repeat the process

Now take this result as the new dividend and repeat the process.

#### Divide the leading terms:

[tex]\[
\frac{-4x^4}{x^3} = -4x
\][/tex]

Add [tex]\(-4x\)[/tex] to the quotient.

#### Multiply and subtract:

[tex]\[
(-4x)(x^3 + 6x^2 - 3x - 5) = -4x^4 - 24x^3 + 12x^2 + 20x
\][/tex]

Subtract:

[tex]\[
(-4x^4 - 22x^3 + 24x^2 + 14x - 6) - (-4x^4 - 24x^3 + 12x^2 + 20x)
\][/tex]

This gives:

[tex]\[
0x^4 + 2x^3 + 12x^2 - 6x - 6
\][/tex]

### Step 5: Divide again

#### Divide the leading terms:

[tex]\[
\frac{2x^3}{x^3} = 2
\][/tex]

Add [tex]\(2\)[/tex] to the quotient.

#### Multiply and subtract:

[tex]\[
2(x^3 + 6x^2 - 3x - 5) = 2x^3 + 12x^2 - 6x - 10
\][/tex]

Subtract:

[tex]\[
(2x^3 + 12x^2 - 6x - 6) - (2x^3 + 12x^2 - 6x - 10)
\][/tex]

This leaves:

[tex]\[
0x^3 + 0x^2 + 0x + 4 \quad \text{(remainder)}
\][/tex]

### Conclusion

The quotient is [tex]\(-3x^2 - 4x + 2\)[/tex] and the remainder is [tex]\(4\)[/tex]. Therefore, the division can be expressed as:

[tex]\[
\frac{-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6}{x^3 + 6x^2 - 3x - 5} = -3x^2 - 4x + 2 + \frac{4}{x^3 + 6x^2 - 3x - 5}
\][/tex]

Thank you for reading the article Divide using long division frac 3x 5 22x 4 13x 3 39x 2 14x 6 x 3 6x 2 3x 5 SHOW WORK. We hope the information provided is useful and helps you understand this topic better. Feel free to explore more helpful content on our website!

Rewritten by : Jeany