Thank you for visiting Show how algebra can be used to work out each of these without a calculator a tex 268 2 232 2 tex b tex 469. This page is designed to guide you through key points and clear explanations related to the topic at hand. We aim to make your learning experience smooth, insightful, and informative. Dive in and discover the answers you're looking for!
Answer :
Sure! Let's solve these problems step-by-step using algebraic techniques:
a) [tex]\(268^2 - 232^2\)[/tex]:
For this expression, we can use the difference of squares formula, which states:
[tex]\[
a^2 - b^2 = (a - b)(a + b)
\][/tex]
Here, [tex]\(a = 268\)[/tex] and [tex]\(b = 232\)[/tex]. So:
1. Calculate [tex]\(a - b\)[/tex]:
[tex]\[
268 - 232 = 36
\][/tex]
2. Calculate [tex]\(a + b\)[/tex]:
[tex]\[
268 + 232 = 500
\][/tex]
3. Use the difference of squares formula:
[tex]\[
268^2 - 232^2 = (268 - 232)(268 + 232) = 36 \times 500 = 18000
\][/tex]
So, the answer is [tex]\(18000\)[/tex].
b) [tex]\(469 \times 548 + 469^2 - 469 \times 17\)[/tex]:
We can factor out the common term [tex]\(469\)[/tex]:
1. Recognize the common factor:
[tex]\[
469 \times (548 + 469 - 17)
\][/tex]
2. Simplify inside the parentheses:
[tex]\[
548 + 469 - 17 = 1000
\][/tex]
3. Calculate:
[tex]\[
469 \times 1000 = 469000
\][/tex]
So, the answer is [tex]\(469000\)[/tex].
c) [tex]\(\frac{65.1 \times 29.2 + 65.1 \times 35.9 - 91.7 \times 26.4 + 65.3 \times 26.4}{18.3^2 - 18.3 \times 5.4}\)[/tex]:
Let's simplify the numerator and the denominator separately:
1. Numerator:
Group and factor similar terms:
[tex]\[
65.1 \times (29.2 + 35.9) + 26.4 \times (65.3 - 91.7)
\][/tex]
- Simplify [tex]\(29.2 + 35.9\)[/tex]:
[tex]\[
29.2 + 35.9 = 65.1
\][/tex]
- Simplify [tex]\(65.3 - 91.7\)[/tex]:
[tex]\[
65.3 - 91.7 = -26.4
\][/tex]
- Substitute back:
[tex]\[
65.1 \times 65.1 + 26.4 \times (-26.4)
\][/tex]
Calculate:
[tex]\[
65.1^2 - 26.4^2
\][/tex]
2. Denominator:
Use basic algebraic simplification:
[tex]\[
18.3^2 - 18.3 \times 5.4 = 18.3 \times (18.3 - 5.4)
\][/tex]
- Simplify [tex]\(18.3 - 5.4\)[/tex]:
[tex]\[
18.3 - 5.4 = 12.9
\][/tex]
Calculate:
[tex]\[
18.3 \times 12.9
\][/tex]
3. Combine the results:
The simplified expression:
[tex]\[
\frac{65.1^2 - 26.4^2}{18.3 \times 12.9}
\][/tex]
By solving the simplified components, the final result of the expression is approximately [tex]\(15\)[/tex].
So, the answer for part c is [tex]\(15\)[/tex].
Putting it all together, the solutions are:
- a) 18000
- b) 469000
- c) 15
a) [tex]\(268^2 - 232^2\)[/tex]:
For this expression, we can use the difference of squares formula, which states:
[tex]\[
a^2 - b^2 = (a - b)(a + b)
\][/tex]
Here, [tex]\(a = 268\)[/tex] and [tex]\(b = 232\)[/tex]. So:
1. Calculate [tex]\(a - b\)[/tex]:
[tex]\[
268 - 232 = 36
\][/tex]
2. Calculate [tex]\(a + b\)[/tex]:
[tex]\[
268 + 232 = 500
\][/tex]
3. Use the difference of squares formula:
[tex]\[
268^2 - 232^2 = (268 - 232)(268 + 232) = 36 \times 500 = 18000
\][/tex]
So, the answer is [tex]\(18000\)[/tex].
b) [tex]\(469 \times 548 + 469^2 - 469 \times 17\)[/tex]:
We can factor out the common term [tex]\(469\)[/tex]:
1. Recognize the common factor:
[tex]\[
469 \times (548 + 469 - 17)
\][/tex]
2. Simplify inside the parentheses:
[tex]\[
548 + 469 - 17 = 1000
\][/tex]
3. Calculate:
[tex]\[
469 \times 1000 = 469000
\][/tex]
So, the answer is [tex]\(469000\)[/tex].
c) [tex]\(\frac{65.1 \times 29.2 + 65.1 \times 35.9 - 91.7 \times 26.4 + 65.3 \times 26.4}{18.3^2 - 18.3 \times 5.4}\)[/tex]:
Let's simplify the numerator and the denominator separately:
1. Numerator:
Group and factor similar terms:
[tex]\[
65.1 \times (29.2 + 35.9) + 26.4 \times (65.3 - 91.7)
\][/tex]
- Simplify [tex]\(29.2 + 35.9\)[/tex]:
[tex]\[
29.2 + 35.9 = 65.1
\][/tex]
- Simplify [tex]\(65.3 - 91.7\)[/tex]:
[tex]\[
65.3 - 91.7 = -26.4
\][/tex]
- Substitute back:
[tex]\[
65.1 \times 65.1 + 26.4 \times (-26.4)
\][/tex]
Calculate:
[tex]\[
65.1^2 - 26.4^2
\][/tex]
2. Denominator:
Use basic algebraic simplification:
[tex]\[
18.3^2 - 18.3 \times 5.4 = 18.3 \times (18.3 - 5.4)
\][/tex]
- Simplify [tex]\(18.3 - 5.4\)[/tex]:
[tex]\[
18.3 - 5.4 = 12.9
\][/tex]
Calculate:
[tex]\[
18.3 \times 12.9
\][/tex]
3. Combine the results:
The simplified expression:
[tex]\[
\frac{65.1^2 - 26.4^2}{18.3 \times 12.9}
\][/tex]
By solving the simplified components, the final result of the expression is approximately [tex]\(15\)[/tex].
So, the answer for part c is [tex]\(15\)[/tex].
Putting it all together, the solutions are:
- a) 18000
- b) 469000
- c) 15
Thank you for reading the article Show how algebra can be used to work out each of these without a calculator a tex 268 2 232 2 tex b tex 469. We hope the information provided is useful and helps you understand this topic better. Feel free to explore more helpful content on our website!
- You are operating a recreational vessel less than 39 4 feet long on federally controlled waters Which of the following is a legal sound device
- Which step should a food worker complete to prevent cross contact when preparing and serving an allergen free meal A Clean and sanitize all surfaces
- For one month Siera calculated her hometown s average high temperature in degrees Fahrenheit She wants to convert that temperature from degrees Fahrenheit to degrees
Rewritten by : Jeany