Thank you for visiting FACTORING POLYNOMIAL EXPRESSIONS EXAM Score 39 Instructions Show your work for each question 1 Write the prime factorization of tex 18 x 4 y 2. This page is designed to guide you through key points and clear explanations related to the topic at hand. We aim to make your learning experience smooth, insightful, and informative. Dive in and discover the answers you're looking for!
Answer :
Sure, let's solve each part of the question step by step.
1. Find the prime factorization and greatest common factor.
- For the monomial [tex]\(18x^4y^2\)[/tex]:
- Prime factorization of 18: [tex]\(18 = 2 \times 3^2\)[/tex]
- So, [tex]\(18x^4y^2 = 2 \times 3^2 \times x^4 \times y^2\)[/tex]
- For the monomial [tex]\(24x^3y^5\)[/tex]:
- Prime factorization of 24: [tex]\(24 = 2^3 \times 3\)[/tex]
- So, [tex]\(24x^3y^5 = 2^3 \times 3 \times x^3 \times y^5\)[/tex]
- Determine the greatest common factor (GCF):
- For numbers: minimum powers of each prime factor
- [tex]\(2^1\)[/tex] (because [tex]\(2^1\)[/tex] in 18 and [tex]\(2^3\)[/tex] in 24)
- [tex]\(3^1\)[/tex] (because [tex]\(3^2\)[/tex] in 18 and [tex]\(3^1\)[/tex] in 24)
- For variables:
- [tex]\(x^3\)[/tex] (lowest power between [tex]\(x^4\)[/tex] and [tex]\(x^3\)[/tex])
- [tex]\(y^2\)[/tex] (lowest power between [tex]\(y^2\)[/tex] and [tex]\(y^5\)[/tex])
- So, GCF is: [tex]\(2 \times 3 \times x^3 \times y^2 = 6x^3y^2\)[/tex]
2. Find the GCF for each set of monomials.
a) [tex]\(7m, 14m\)[/tex]
- GCF: 7 (the common factor of 7 and 14) and [tex]\(m\)[/tex], so [tex]\(7m\)[/tex].
b) [tex]\(-10x^5z^6, -15x^5z^4\)[/tex]
- Numerical GCF: 5 (common factor of 10 and 15)
- Variable GCF: [tex]\(x^5\)[/tex] and [tex]\(z^4\)[/tex] (lowest power for z)
- So, GCF is [tex]\(-5x^5z^4\)[/tex].
c) [tex]\(8ab^2, 9ab, 6a^2b\)[/tex]
- There is no common numerical factor for 8, 9, and 6.
- Variable GCF: [tex]\(ab\)[/tex] (lowest power of [tex]\(a\)[/tex] and [tex]\(b\)[/tex])
- So, GCF is [tex]\(ab\)[/tex].
d) [tex]\(-28pqr^3, -56p^2q, -64q^2r\)[/tex]
- Numerical GCF: 4 (common factor of 28, 56, and 64)
- Variable GCF: [tex]\(q\)[/tex] (present in all terms)
- So, GCF is [tex]\(-4q\)[/tex].
3. Identify each missing factor.
a) [tex]\(12a + 24b\)[/tex]
- Factor out the GCF of 12 and 24, which is 12.
- Rewrite: [tex]\(12(a + 2b)\)[/tex], missing factor is [tex]\(12\)[/tex].
b) [tex]\(4x^2y + 8x^3y^2\)[/tex]
- Factor out the GCF: [tex]\(4x^2y\)[/tex].
- Rewrite: [tex]\(4x^2y(1 + 2xy)\)[/tex], missing factor is [tex]\((1 + 2xy)\)[/tex].
4. Factor each polynomial by removing the GCF.
a) [tex]\(7xy^2 + 49\)[/tex]
- Factor out 7: [tex]\(7(xy^2 + 7)\)[/tex].
b) [tex]\(9ab - 12ac\)[/tex]
- Factor out 3a: [tex]\(3a(3b - 4c)\)[/tex].
c) [tex]\(-5x^2 - 10xy - 20xz\)[/tex]
- Factor out [tex]\(-5x\)[/tex]: [tex]\(-5x(x + 2y + 4z)\)[/tex].
d) [tex]\(14a^2b^2 + 21a^3b^2 - 35a^2b^3\)[/tex]
- Factor out [tex]\(7a^2b^2\)[/tex]: [tex]\(7a^2b^2(2 + 3a - 5b)\)[/tex].
I hope this helps! Let me know if you have any questions!
1. Find the prime factorization and greatest common factor.
- For the monomial [tex]\(18x^4y^2\)[/tex]:
- Prime factorization of 18: [tex]\(18 = 2 \times 3^2\)[/tex]
- So, [tex]\(18x^4y^2 = 2 \times 3^2 \times x^4 \times y^2\)[/tex]
- For the monomial [tex]\(24x^3y^5\)[/tex]:
- Prime factorization of 24: [tex]\(24 = 2^3 \times 3\)[/tex]
- So, [tex]\(24x^3y^5 = 2^3 \times 3 \times x^3 \times y^5\)[/tex]
- Determine the greatest common factor (GCF):
- For numbers: minimum powers of each prime factor
- [tex]\(2^1\)[/tex] (because [tex]\(2^1\)[/tex] in 18 and [tex]\(2^3\)[/tex] in 24)
- [tex]\(3^1\)[/tex] (because [tex]\(3^2\)[/tex] in 18 and [tex]\(3^1\)[/tex] in 24)
- For variables:
- [tex]\(x^3\)[/tex] (lowest power between [tex]\(x^4\)[/tex] and [tex]\(x^3\)[/tex])
- [tex]\(y^2\)[/tex] (lowest power between [tex]\(y^2\)[/tex] and [tex]\(y^5\)[/tex])
- So, GCF is: [tex]\(2 \times 3 \times x^3 \times y^2 = 6x^3y^2\)[/tex]
2. Find the GCF for each set of monomials.
a) [tex]\(7m, 14m\)[/tex]
- GCF: 7 (the common factor of 7 and 14) and [tex]\(m\)[/tex], so [tex]\(7m\)[/tex].
b) [tex]\(-10x^5z^6, -15x^5z^4\)[/tex]
- Numerical GCF: 5 (common factor of 10 and 15)
- Variable GCF: [tex]\(x^5\)[/tex] and [tex]\(z^4\)[/tex] (lowest power for z)
- So, GCF is [tex]\(-5x^5z^4\)[/tex].
c) [tex]\(8ab^2, 9ab, 6a^2b\)[/tex]
- There is no common numerical factor for 8, 9, and 6.
- Variable GCF: [tex]\(ab\)[/tex] (lowest power of [tex]\(a\)[/tex] and [tex]\(b\)[/tex])
- So, GCF is [tex]\(ab\)[/tex].
d) [tex]\(-28pqr^3, -56p^2q, -64q^2r\)[/tex]
- Numerical GCF: 4 (common factor of 28, 56, and 64)
- Variable GCF: [tex]\(q\)[/tex] (present in all terms)
- So, GCF is [tex]\(-4q\)[/tex].
3. Identify each missing factor.
a) [tex]\(12a + 24b\)[/tex]
- Factor out the GCF of 12 and 24, which is 12.
- Rewrite: [tex]\(12(a + 2b)\)[/tex], missing factor is [tex]\(12\)[/tex].
b) [tex]\(4x^2y + 8x^3y^2\)[/tex]
- Factor out the GCF: [tex]\(4x^2y\)[/tex].
- Rewrite: [tex]\(4x^2y(1 + 2xy)\)[/tex], missing factor is [tex]\((1 + 2xy)\)[/tex].
4. Factor each polynomial by removing the GCF.
a) [tex]\(7xy^2 + 49\)[/tex]
- Factor out 7: [tex]\(7(xy^2 + 7)\)[/tex].
b) [tex]\(9ab - 12ac\)[/tex]
- Factor out 3a: [tex]\(3a(3b - 4c)\)[/tex].
c) [tex]\(-5x^2 - 10xy - 20xz\)[/tex]
- Factor out [tex]\(-5x\)[/tex]: [tex]\(-5x(x + 2y + 4z)\)[/tex].
d) [tex]\(14a^2b^2 + 21a^3b^2 - 35a^2b^3\)[/tex]
- Factor out [tex]\(7a^2b^2\)[/tex]: [tex]\(7a^2b^2(2 + 3a - 5b)\)[/tex].
I hope this helps! Let me know if you have any questions!
Thank you for reading the article FACTORING POLYNOMIAL EXPRESSIONS EXAM Score 39 Instructions Show your work for each question 1 Write the prime factorization of tex 18 x 4 y 2. We hope the information provided is useful and helps you understand this topic better. Feel free to explore more helpful content on our website!
- You are operating a recreational vessel less than 39 4 feet long on federally controlled waters Which of the following is a legal sound device
- Which step should a food worker complete to prevent cross contact when preparing and serving an allergen free meal A Clean and sanitize all surfaces
- For one month Siera calculated her hometown s average high temperature in degrees Fahrenheit She wants to convert that temperature from degrees Fahrenheit to degrees
Rewritten by : Jeany