Thank you for visiting Divide using long division frac 3x 5 22x 4 13x 3 39x 2 14x 6 x 3 6x 2 3x 5. This page is designed to guide you through key points and clear explanations related to the topic at hand. We aim to make your learning experience smooth, insightful, and informative. Dive in and discover the answers you're looking for!
Answer :
Sure! Let's perform long division for the expression [tex]\(\frac{-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6}{x^3 + 6x^2 - 3x - 5}\)[/tex].
Step 1: Set up the long division.
The dividend is [tex]\(-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6\)[/tex] and the divisor is [tex]\(x^3 + 6x^2 - 3x - 5\)[/tex].
Step 2: Divide the first term of the dividend by the first term of the divisor.
Divide [tex]\(-3x^5\)[/tex] by [tex]\(x^3\)[/tex], which gives [tex]\(-3x^2\)[/tex].
Step 3: Multiply the entire divisor by this quotient term.
Multiply [tex]\(-3x^2\)[/tex] by each term in the divisor:
- [tex]\(-3x^2 \times x^3 = -3x^5\)[/tex]
- [tex]\(-3x^2 \times 6x^2 = -18x^4\)[/tex]
- [tex]\(-3x^2 \times -3x = 9x^3\)[/tex]
- [tex]\(-3x^2 \times -5 = 15x^2\)[/tex]
Step 4: Subtract the result from the original polynomial.
Perform the subtraction:
[tex]\[
(-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6) - (-3x^5 - 18x^4 + 9x^3 + 15x^2)
\][/tex]
This simplifies to:
[tex]\[
0x^5 - 4x^4 - 22x^3 + 24x^2 + 14x - 6
\][/tex]
Step 5: Repeat the process with the new polynomial.
Divide [tex]\(-4x^4\)[/tex] by [tex]\(x^3\)[/tex], which gives [tex]\(-4x\)[/tex].
Step 6: Multiply the entire divisor by this new quotient term.
Multiply [tex]\(-4x\)[/tex] by each term in the divisor:
- [tex]\(-4x \times x^3 = -4x^4\)[/tex]
- [tex]\(-4x \times 6x^2 = -24x^3\)[/tex]
- [tex]\(-4x \times -3x = 12x^2\)[/tex]
- [tex]\(-4x \times -5 = 20x\)[/tex]
Step 7: Subtract this from the current polynomial.
Perform the subtraction:
[tex]\[
(-4x^4 - 22x^3 + 24x^2 + 14x - 6) - (-4x^4 - 24x^3 + 12x^2 + 20x)
\][/tex]
This simplifies to:
[tex]\[
0x^4 + 2x^3 + 12x^2 - 6x - 6
\][/tex]
Step 8: Repeat the process with the new polynomial.
Divide [tex]\(2x^3\)[/tex] by [tex]\(x^3\)[/tex], which gives [tex]\(2\)[/tex].
Step 9: Multiply the entire divisor by this last quotient term.
Multiply [tex]\(2\)[/tex] by each term in the divisor:
- [tex]\(2 \times x^3 = 2x^3\)[/tex]
- [tex]\(2 \times 6x^2 = 12x^2\)[/tex]
- [tex]\(2 \times -3x = -6x\)[/tex]
- [tex]\(2 \times -5 = -10\)[/tex]
Step 10: Subtract to find the remainder.
Perform the subtraction:
[tex]\[
(2x^3 + 12x^2 - 6x - 6) - (2x^3 + 12x^2 - 6x - 10)
\][/tex]
This simplifies to:
[tex]\[
0x^3 + 0x^2 + 0x + 4
\][/tex]
So, the quotient is [tex]\(-3x^2 - 4x + 2\)[/tex] and the remainder is [tex]\(4\)[/tex].
The final answer is:
[tex]\[
\frac{-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6}{x^3 + 6x^2 - 3x - 5} = -3x^2 - 4x + 2 + \frac{4}{x^3 + 6x^2 - 3x - 5}
\][/tex]
Step 1: Set up the long division.
The dividend is [tex]\(-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6\)[/tex] and the divisor is [tex]\(x^3 + 6x^2 - 3x - 5\)[/tex].
Step 2: Divide the first term of the dividend by the first term of the divisor.
Divide [tex]\(-3x^5\)[/tex] by [tex]\(x^3\)[/tex], which gives [tex]\(-3x^2\)[/tex].
Step 3: Multiply the entire divisor by this quotient term.
Multiply [tex]\(-3x^2\)[/tex] by each term in the divisor:
- [tex]\(-3x^2 \times x^3 = -3x^5\)[/tex]
- [tex]\(-3x^2 \times 6x^2 = -18x^4\)[/tex]
- [tex]\(-3x^2 \times -3x = 9x^3\)[/tex]
- [tex]\(-3x^2 \times -5 = 15x^2\)[/tex]
Step 4: Subtract the result from the original polynomial.
Perform the subtraction:
[tex]\[
(-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6) - (-3x^5 - 18x^4 + 9x^3 + 15x^2)
\][/tex]
This simplifies to:
[tex]\[
0x^5 - 4x^4 - 22x^3 + 24x^2 + 14x - 6
\][/tex]
Step 5: Repeat the process with the new polynomial.
Divide [tex]\(-4x^4\)[/tex] by [tex]\(x^3\)[/tex], which gives [tex]\(-4x\)[/tex].
Step 6: Multiply the entire divisor by this new quotient term.
Multiply [tex]\(-4x\)[/tex] by each term in the divisor:
- [tex]\(-4x \times x^3 = -4x^4\)[/tex]
- [tex]\(-4x \times 6x^2 = -24x^3\)[/tex]
- [tex]\(-4x \times -3x = 12x^2\)[/tex]
- [tex]\(-4x \times -5 = 20x\)[/tex]
Step 7: Subtract this from the current polynomial.
Perform the subtraction:
[tex]\[
(-4x^4 - 22x^3 + 24x^2 + 14x - 6) - (-4x^4 - 24x^3 + 12x^2 + 20x)
\][/tex]
This simplifies to:
[tex]\[
0x^4 + 2x^3 + 12x^2 - 6x - 6
\][/tex]
Step 8: Repeat the process with the new polynomial.
Divide [tex]\(2x^3\)[/tex] by [tex]\(x^3\)[/tex], which gives [tex]\(2\)[/tex].
Step 9: Multiply the entire divisor by this last quotient term.
Multiply [tex]\(2\)[/tex] by each term in the divisor:
- [tex]\(2 \times x^3 = 2x^3\)[/tex]
- [tex]\(2 \times 6x^2 = 12x^2\)[/tex]
- [tex]\(2 \times -3x = -6x\)[/tex]
- [tex]\(2 \times -5 = -10\)[/tex]
Step 10: Subtract to find the remainder.
Perform the subtraction:
[tex]\[
(2x^3 + 12x^2 - 6x - 6) - (2x^3 + 12x^2 - 6x - 10)
\][/tex]
This simplifies to:
[tex]\[
0x^3 + 0x^2 + 0x + 4
\][/tex]
So, the quotient is [tex]\(-3x^2 - 4x + 2\)[/tex] and the remainder is [tex]\(4\)[/tex].
The final answer is:
[tex]\[
\frac{-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6}{x^3 + 6x^2 - 3x - 5} = -3x^2 - 4x + 2 + \frac{4}{x^3 + 6x^2 - 3x - 5}
\][/tex]
Thank you for reading the article Divide using long division frac 3x 5 22x 4 13x 3 39x 2 14x 6 x 3 6x 2 3x 5. We hope the information provided is useful and helps you understand this topic better. Feel free to explore more helpful content on our website!
- You are operating a recreational vessel less than 39 4 feet long on federally controlled waters Which of the following is a legal sound device
- Which step should a food worker complete to prevent cross contact when preparing and serving an allergen free meal A Clean and sanitize all surfaces
- For one month Siera calculated her hometown s average high temperature in degrees Fahrenheit She wants to convert that temperature from degrees Fahrenheit to degrees
Rewritten by : Jeany