Thank you for visiting Divide using long division tex frac 3x 5 22x 4 13x 3 39x 2 14x 6 x 3 6x 2 3x 5 tex Show work. This page is designed to guide you through key points and clear explanations related to the topic at hand. We aim to make your learning experience smooth, insightful, and informative. Dive in and discover the answers you're looking for!
Answer :
Sure! Let's perform the long division of the polynomial [tex]\(-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6\)[/tex] by the polynomial [tex]\(x^3 + 6x^2 - 3x - 5\)[/tex].
### Step-by-Step Long Division
1. Set Up the Division:
- Dividend: [tex]\(-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6\)[/tex]
- Divisor: [tex]\(x^3 + 6x^2 - 3x - 5\)[/tex]
2. Divide the First Terms:
- Divide the leading term of the dividend by the leading term of the divisor:
[tex]\(\frac{-3x^5}{x^3} = -3x^2\)[/tex].
3. Multiply and Subtract:
- Multiply the entire divisor by [tex]\(-3x^2\)[/tex]:
[tex]\[
-3x^2 \cdot (x^3 + 6x^2 - 3x - 5) = -3x^5 - 18x^4 + 9x^3 + 15x^2
\][/tex]
- Subtract this from the dividend:
[tex]\[
(-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6) - (-3x^5 - 18x^4 + 9x^3 + 15x^2)
\][/tex]
Resulting in:
[tex]\[
0x^5 + (-4x^4) - 22x^3 + 24x^2 + 14x - 6
\][/tex]
4. Repeat the Process:
- Divide the new leading term, [tex]\(-4x^4\)[/tex], by [tex]\(x^3\)[/tex]:
[tex]\(\frac{-4x^4}{x^3} = -4x\)[/tex].
5. Multiply and Subtract:
- Multiply the entire divisor by [tex]\(-4x\)[/tex]:
[tex]\[
-4x \cdot (x^3 + 6x^2 - 3x - 5) = -4x^4 - 24x^3 + 12x^2 + 20x
\][/tex]
- Subtract this from the current remainder:
[tex]\[
(-4x^4 - 22x^3 + 24x^2 + 14x - 6) - (-4x^4 - 24x^3 + 12x^2 + 20x)
\][/tex]
Resulting in:
[tex]\[
0x^4 + 2x^3 + 12x^2 - 6x - 6
\][/tex]
6. Divide Again:
- Divide [tex]\(2x^3\)[/tex] by [tex]\(x^3\)[/tex]:
[tex]\(\frac{2x^3}{x^3} = 2\)[/tex].
7. Multiply and Final Subtract:
- Multiply the entire divisor by [tex]\(2\)[/tex]:
[tex]\[
2 \cdot (x^3 + 6x^2 - 3x - 5) = 2x^3 + 12x^2 - 6x - 10
\][/tex]
- Subtract this from the current remainder:
[tex]\[
(2x^3 + 12x^2 - 6x - 6) - (2x^3 + 12x^2 - 6x - 10)
\][/tex]
Resulting in:
[tex]\[
0x^3 + 0x^2 + 0x + 4
\][/tex]
### Final Result
- Quotient: [tex]\(-3x^2 - 4x + 2\)[/tex]
- Remainder: [tex]\(4\)[/tex]
Therefore, the quotient of the division is [tex]\(-3x^2 - 4x + 2\)[/tex] and the remainder is [tex]\(4\)[/tex], meaning:
[tex]\[
\frac{-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6}{x^3 + 6x^2 - 3x - 5} = -3x^2 - 4x + 2 + \frac{4}{x^3 + 6x^2 - 3x - 5}
\][/tex]
### Step-by-Step Long Division
1. Set Up the Division:
- Dividend: [tex]\(-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6\)[/tex]
- Divisor: [tex]\(x^3 + 6x^2 - 3x - 5\)[/tex]
2. Divide the First Terms:
- Divide the leading term of the dividend by the leading term of the divisor:
[tex]\(\frac{-3x^5}{x^3} = -3x^2\)[/tex].
3. Multiply and Subtract:
- Multiply the entire divisor by [tex]\(-3x^2\)[/tex]:
[tex]\[
-3x^2 \cdot (x^3 + 6x^2 - 3x - 5) = -3x^5 - 18x^4 + 9x^3 + 15x^2
\][/tex]
- Subtract this from the dividend:
[tex]\[
(-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6) - (-3x^5 - 18x^4 + 9x^3 + 15x^2)
\][/tex]
Resulting in:
[tex]\[
0x^5 + (-4x^4) - 22x^3 + 24x^2 + 14x - 6
\][/tex]
4. Repeat the Process:
- Divide the new leading term, [tex]\(-4x^4\)[/tex], by [tex]\(x^3\)[/tex]:
[tex]\(\frac{-4x^4}{x^3} = -4x\)[/tex].
5. Multiply and Subtract:
- Multiply the entire divisor by [tex]\(-4x\)[/tex]:
[tex]\[
-4x \cdot (x^3 + 6x^2 - 3x - 5) = -4x^4 - 24x^3 + 12x^2 + 20x
\][/tex]
- Subtract this from the current remainder:
[tex]\[
(-4x^4 - 22x^3 + 24x^2 + 14x - 6) - (-4x^4 - 24x^3 + 12x^2 + 20x)
\][/tex]
Resulting in:
[tex]\[
0x^4 + 2x^3 + 12x^2 - 6x - 6
\][/tex]
6. Divide Again:
- Divide [tex]\(2x^3\)[/tex] by [tex]\(x^3\)[/tex]:
[tex]\(\frac{2x^3}{x^3} = 2\)[/tex].
7. Multiply and Final Subtract:
- Multiply the entire divisor by [tex]\(2\)[/tex]:
[tex]\[
2 \cdot (x^3 + 6x^2 - 3x - 5) = 2x^3 + 12x^2 - 6x - 10
\][/tex]
- Subtract this from the current remainder:
[tex]\[
(2x^3 + 12x^2 - 6x - 6) - (2x^3 + 12x^2 - 6x - 10)
\][/tex]
Resulting in:
[tex]\[
0x^3 + 0x^2 + 0x + 4
\][/tex]
### Final Result
- Quotient: [tex]\(-3x^2 - 4x + 2\)[/tex]
- Remainder: [tex]\(4\)[/tex]
Therefore, the quotient of the division is [tex]\(-3x^2 - 4x + 2\)[/tex] and the remainder is [tex]\(4\)[/tex], meaning:
[tex]\[
\frac{-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6}{x^3 + 6x^2 - 3x - 5} = -3x^2 - 4x + 2 + \frac{4}{x^3 + 6x^2 - 3x - 5}
\][/tex]
Thank you for reading the article Divide using long division tex frac 3x 5 22x 4 13x 3 39x 2 14x 6 x 3 6x 2 3x 5 tex Show work. We hope the information provided is useful and helps you understand this topic better. Feel free to explore more helpful content on our website!
- You are operating a recreational vessel less than 39 4 feet long on federally controlled waters Which of the following is a legal sound device
- Which step should a food worker complete to prevent cross contact when preparing and serving an allergen free meal A Clean and sanitize all surfaces
- For one month Siera calculated her hometown s average high temperature in degrees Fahrenheit She wants to convert that temperature from degrees Fahrenheit to degrees
Rewritten by : Jeany