Thank you for visiting A parachutist of mass 39 4 kg jumps out of an airplane at a height of 1340 m and lands on the ground with a. This page is designed to guide you through key points and clear explanations related to the topic at hand. We aim to make your learning experience smooth, insightful, and informative. Dive in and discover the answers you're looking for!
Answer :
Answer:
Approximately 500kJ
Explanation:
According to the law of conservation of energy which states that energy can neither be created nor destroyed but can be converted from one form to another.
A parachutist jumping out of the airplane covering a particular height and under the influence of gravity will possess potential energy during fall. Since PE = mass × acceleration due to gravity × height
PE = 39.4×1340×9.8
PE = 501,562Joules
If the body lands on the ground with a speed of 5.78m/s, this means the body possesses kinetic energy at the point of landing. The kinetic energy on landing is 1/2mv²
KE = 1/2×39.4×5.78²
KE = 658.14Joules
The amount of energy lost due to friction will be PE-KE
= 501,562-658.14
= 500,903Joules approximately 500kJ
Thank you for reading the article A parachutist of mass 39 4 kg jumps out of an airplane at a height of 1340 m and lands on the ground with a. We hope the information provided is useful and helps you understand this topic better. Feel free to explore more helpful content on our website!
- You are operating a recreational vessel less than 39 4 feet long on federally controlled waters Which of the following is a legal sound device
- Which step should a food worker complete to prevent cross contact when preparing and serving an allergen free meal A Clean and sanitize all surfaces
- For one month Siera calculated her hometown s average high temperature in degrees Fahrenheit She wants to convert that temperature from degrees Fahrenheit to degrees
Rewritten by : Jeany
Final answer:
The solution involves calculating the parachutist's initial potential energy and final kinetic energy, then finding the difference to determine the energy lost to air friction during the jump.
Explanation:
The question asks how much energy was lost to air friction during the jump of a parachutist who has a mass of 39.4 kg, jumps from a height of 1340 m, and lands with a speed of 5.78 m/s. To find the energy lost to air friction, we first calculate the potential energy at the start and the kinetic energy at the end of the jump, then find the difference.
Initial potential energy (PE_initial) is given by mgh, where m is mass, g is acceleration due to gravity (9.8 m/s²), and h is height. Therefore, PE_initial = 39.4 kg * 9.8 m/s² * 1340 m.
Final kinetic energy (KE_final) is given by 1/2 mv², where m is mass and v is velocity at landing. Thus, KE_final = 1/2 * 39.4 kg * (5.78 m/s)².
The energy lost to air friction equals the initial potential energy minus the final kinetic energy. Subtracting KE_final from PE_initial gives the amount of energy lost to air resistance.