Thank you for visiting In Exercises 39 46 determine whether the function is even odd or neither 39 tex h x 4x 7 tex 40 tex g x 2x. This page is designed to guide you through key points and clear explanations related to the topic at hand. We aim to make your learning experience smooth, insightful, and informative. Dive in and discover the answers you're looking for!
Answer :
To determine whether a function is even, odd, or neither, we use the following rules:
1. A function [tex]\( f(x) \)[/tex] is even if [tex]\( f(-x) = f(x) \)[/tex] for all [tex]\( x \)[/tex] in the domain of the function.
2. A function [tex]\( f(x) \)[/tex] is odd if [tex]\( f(-x) = -f(x) \)[/tex] for all [tex]\( x \)[/tex] in the domain of the function.
3. If neither of these conditions is satisfied, then the function is neither even nor odd.
Let's analyze each function:
39. [tex]\( h(x) = 4x^7 \)[/tex]
- Check [tex]\( h(-x) = 4(-x)^7 = -4x^7 = -h(x) \)[/tex].
- Conclusion: [tex]\( h(x) \)[/tex] is odd.
40. [tex]\( g(x) = -2x^6 + x^2 \)[/tex]
- Check [tex]\( g(-x) = -2(-x)^6 + (-x)^2 = -2x^6 + x^2 = g(x) \)[/tex].
- Conclusion: [tex]\( g(x) \)[/tex] is even.
41. [tex]\( f(x) = x^4 + 3x^2 - 2 \)[/tex]
- Check [tex]\( f(-x) = (-x)^4 + 3(-x)^2 - 2 = x^4 + 3x^2 - 2 = f(x) \)[/tex].
- Conclusion: [tex]\( f(x) \)[/tex] is even.
42. [tex]\( f(x) = x^5 + 3x^3 - x \)[/tex]
- Check [tex]\( f(-x) = (-x)^5 + 3(-x)^3 - (-x) = -x^5 - 3x^3 + x = -f(x) \)[/tex].
- Conclusion: [tex]\( f(x) \)[/tex] is odd.
43. [tex]\( g(x) = x^2 + 5x + 1 \)[/tex]
- Check [tex]\( g(-x) = (-x)^2 + 5(-x) + 1 = x^2 - 5x + 1 \)[/tex].
- This doesn't equal [tex]\( g(x) \)[/tex] nor [tex]\(-g(x)\)[/tex].
- Conclusion: [tex]\( g(x) \)[/tex] is neither even nor odd.
44. [tex]\( f(x) = -x^3 + 2x - 9 \)[/tex]
- Check [tex]\( f(-x) = -(-x)^3 + 2(-x) - 9 = x^3 - 2x - 9 \)[/tex].
- This doesn't equal [tex]\( f(x) \)[/tex] nor [tex]\(-f(x)\)[/tex].
- Conclusion: [tex]\( f(x) \)[/tex] is neither even nor odd.
45. [tex]\( f(x) = x^4 - 12x^2 \)[/tex]
- Check [tex]\( f(-x) = (-x)^4 - 12(-x)^2 = x^4 - 12x^2 = f(x) \)[/tex].
- Conclusion: [tex]\( f(x) \)[/tex] is even.
46. [tex]\( h(x) = x^5 + 3x^4 \)[/tex]
- Check [tex]\( h(-x) = (-x)^5 + 3(-x)^4 = -x^5 + 3x^4 \)[/tex].
- This doesn't equal [tex]\( h(x) \)[/tex] nor [tex]\(-h(x)\)[/tex].
- Conclusion: [tex]\( h(x) \)[/tex] is neither even nor odd.
Summary:
39. Odd
40. Even
41. Even
42. Odd
43. Neither
44. Neither
45. Even
46. Neither
1. A function [tex]\( f(x) \)[/tex] is even if [tex]\( f(-x) = f(x) \)[/tex] for all [tex]\( x \)[/tex] in the domain of the function.
2. A function [tex]\( f(x) \)[/tex] is odd if [tex]\( f(-x) = -f(x) \)[/tex] for all [tex]\( x \)[/tex] in the domain of the function.
3. If neither of these conditions is satisfied, then the function is neither even nor odd.
Let's analyze each function:
39. [tex]\( h(x) = 4x^7 \)[/tex]
- Check [tex]\( h(-x) = 4(-x)^7 = -4x^7 = -h(x) \)[/tex].
- Conclusion: [tex]\( h(x) \)[/tex] is odd.
40. [tex]\( g(x) = -2x^6 + x^2 \)[/tex]
- Check [tex]\( g(-x) = -2(-x)^6 + (-x)^2 = -2x^6 + x^2 = g(x) \)[/tex].
- Conclusion: [tex]\( g(x) \)[/tex] is even.
41. [tex]\( f(x) = x^4 + 3x^2 - 2 \)[/tex]
- Check [tex]\( f(-x) = (-x)^4 + 3(-x)^2 - 2 = x^4 + 3x^2 - 2 = f(x) \)[/tex].
- Conclusion: [tex]\( f(x) \)[/tex] is even.
42. [tex]\( f(x) = x^5 + 3x^3 - x \)[/tex]
- Check [tex]\( f(-x) = (-x)^5 + 3(-x)^3 - (-x) = -x^5 - 3x^3 + x = -f(x) \)[/tex].
- Conclusion: [tex]\( f(x) \)[/tex] is odd.
43. [tex]\( g(x) = x^2 + 5x + 1 \)[/tex]
- Check [tex]\( g(-x) = (-x)^2 + 5(-x) + 1 = x^2 - 5x + 1 \)[/tex].
- This doesn't equal [tex]\( g(x) \)[/tex] nor [tex]\(-g(x)\)[/tex].
- Conclusion: [tex]\( g(x) \)[/tex] is neither even nor odd.
44. [tex]\( f(x) = -x^3 + 2x - 9 \)[/tex]
- Check [tex]\( f(-x) = -(-x)^3 + 2(-x) - 9 = x^3 - 2x - 9 \)[/tex].
- This doesn't equal [tex]\( f(x) \)[/tex] nor [tex]\(-f(x)\)[/tex].
- Conclusion: [tex]\( f(x) \)[/tex] is neither even nor odd.
45. [tex]\( f(x) = x^4 - 12x^2 \)[/tex]
- Check [tex]\( f(-x) = (-x)^4 - 12(-x)^2 = x^4 - 12x^2 = f(x) \)[/tex].
- Conclusion: [tex]\( f(x) \)[/tex] is even.
46. [tex]\( h(x) = x^5 + 3x^4 \)[/tex]
- Check [tex]\( h(-x) = (-x)^5 + 3(-x)^4 = -x^5 + 3x^4 \)[/tex].
- This doesn't equal [tex]\( h(x) \)[/tex] nor [tex]\(-h(x)\)[/tex].
- Conclusion: [tex]\( h(x) \)[/tex] is neither even nor odd.
Summary:
39. Odd
40. Even
41. Even
42. Odd
43. Neither
44. Neither
45. Even
46. Neither
Thank you for reading the article In Exercises 39 46 determine whether the function is even odd or neither 39 tex h x 4x 7 tex 40 tex g x 2x. We hope the information provided is useful and helps you understand this topic better. Feel free to explore more helpful content on our website!
- You are operating a recreational vessel less than 39 4 feet long on federally controlled waters Which of the following is a legal sound device
- Which step should a food worker complete to prevent cross contact when preparing and serving an allergen free meal A Clean and sanitize all surfaces
- For one month Siera calculated her hometown s average high temperature in degrees Fahrenheit She wants to convert that temperature from degrees Fahrenheit to degrees
Rewritten by : Jeany