Thank you for visiting When the temperature is 0 degrees Celsius the Fahrenheit temperature is 32 degrees When the Celsius temperature is 100 degrees the corresponding Fahrenheit temperature is. This page is designed to guide you through key points and clear explanations related to the topic at hand. We aim to make your learning experience smooth, insightful, and informative. Dive in and discover the answers you're looking for!
Answer :
We are given that when the Celsius temperature is 0, the Fahrenheit temperature is 32, and when the Celsius temperature is 100, the Fahrenheit temperature is 212. We wish to express the Fahrenheit temperature as a linear function of Celsius temperature, that is, in the form
[tex]$$
F(C) = aC + b.
$$[/tex]
Step 1. Find the constant [tex]$b$[/tex] by using the point where [tex]$C = 0$[/tex].
Since [tex]$F(0) = 32$[/tex], we have
[tex]$$
F(0) = a(0) + b = 32 \quad \Longrightarrow \quad b = 32.
$$[/tex]
Step 2. Find the slope [tex]$a$[/tex] using the second given point.
When [tex]$C = 100$[/tex], [tex]$F(100) = 212$[/tex]. Substitute into the linear function:
[tex]$$
F(100) = a(100) + 32 = 212.
$$[/tex]
Step 3. Solve for [tex]$a$[/tex].
Subtract 32 from both sides:
[tex]$$
100a = 212 - 32 = 180.
$$[/tex]
Divide both sides by 100:
[tex]$$
a = \frac{180}{100} = 1.8.
$$[/tex]
Thus, the linear function that expresses Fahrenheit in terms of Celsius is:
[tex]$$
F(C) = 1.8C + 32.
$$[/tex]
---
Part (a): Find the rate of change of Fahrenheit temperature for each unit change in Celsius.
The rate of change is the slope [tex]$a$[/tex], which is
[tex]$$
1.8 \text{ Fahrenheit degrees per Celsius degree}.
$$[/tex]
---
Part (b): Find and interpret [tex]$F(21)$[/tex].
Substitute [tex]$C = 21$[/tex] into the linear function:
[tex]$$
F(21) = 1.8(21) + 32.
$$[/tex]
Calculating,
[tex]$$
1.8 \times 21 = 37.8,
$$[/tex]
so
[tex]$$
F(21) = 37.8 + 32 = 69.8.
$$[/tex]
This means that when the Celsius temperature is [tex]$21^\circ\text{C}$[/tex], the Fahrenheit temperature is [tex]$69.8^\circ\text{F}$[/tex].
---
Part (c): Find [tex]$F(-30)$[/tex].
Substitute [tex]$C = -30$[/tex] into the linear function:
[tex]$$
F(-30) = 1.8(-30) + 32.
$$[/tex]
Calculating,
[tex]$$
1.8 \times (-30) = -54,
$$[/tex]
so
[tex]$$
F(-30) = -54 + 32 = -22.
$$[/tex]
Thus, when the Celsius temperature is [tex]$-30^\circ\text{C}$[/tex], the Fahrenheit temperature is [tex]$-22^\circ\text{F}$[/tex].
---
Summary of Answers:
1. The linear function is:
[tex]$$
F(C) = 1.8C + 32.
$$[/tex]
2. The rate of change is [tex]$1.8$[/tex] Fahrenheit degrees per Celsius degree.
3. [tex]$F(21) = 69.8$[/tex], meaning that [tex]$21^\circ\text{C}$[/tex] is equivalent to [tex]$69.8^\circ\text{F}$[/tex].
4. [tex]$F(-30) = -22$[/tex].
[tex]$$
F(C) = aC + b.
$$[/tex]
Step 1. Find the constant [tex]$b$[/tex] by using the point where [tex]$C = 0$[/tex].
Since [tex]$F(0) = 32$[/tex], we have
[tex]$$
F(0) = a(0) + b = 32 \quad \Longrightarrow \quad b = 32.
$$[/tex]
Step 2. Find the slope [tex]$a$[/tex] using the second given point.
When [tex]$C = 100$[/tex], [tex]$F(100) = 212$[/tex]. Substitute into the linear function:
[tex]$$
F(100) = a(100) + 32 = 212.
$$[/tex]
Step 3. Solve for [tex]$a$[/tex].
Subtract 32 from both sides:
[tex]$$
100a = 212 - 32 = 180.
$$[/tex]
Divide both sides by 100:
[tex]$$
a = \frac{180}{100} = 1.8.
$$[/tex]
Thus, the linear function that expresses Fahrenheit in terms of Celsius is:
[tex]$$
F(C) = 1.8C + 32.
$$[/tex]
---
Part (a): Find the rate of change of Fahrenheit temperature for each unit change in Celsius.
The rate of change is the slope [tex]$a$[/tex], which is
[tex]$$
1.8 \text{ Fahrenheit degrees per Celsius degree}.
$$[/tex]
---
Part (b): Find and interpret [tex]$F(21)$[/tex].
Substitute [tex]$C = 21$[/tex] into the linear function:
[tex]$$
F(21) = 1.8(21) + 32.
$$[/tex]
Calculating,
[tex]$$
1.8 \times 21 = 37.8,
$$[/tex]
so
[tex]$$
F(21) = 37.8 + 32 = 69.8.
$$[/tex]
This means that when the Celsius temperature is [tex]$21^\circ\text{C}$[/tex], the Fahrenheit temperature is [tex]$69.8^\circ\text{F}$[/tex].
---
Part (c): Find [tex]$F(-30)$[/tex].
Substitute [tex]$C = -30$[/tex] into the linear function:
[tex]$$
F(-30) = 1.8(-30) + 32.
$$[/tex]
Calculating,
[tex]$$
1.8 \times (-30) = -54,
$$[/tex]
so
[tex]$$
F(-30) = -54 + 32 = -22.
$$[/tex]
Thus, when the Celsius temperature is [tex]$-30^\circ\text{C}$[/tex], the Fahrenheit temperature is [tex]$-22^\circ\text{F}$[/tex].
---
Summary of Answers:
1. The linear function is:
[tex]$$
F(C) = 1.8C + 32.
$$[/tex]
2. The rate of change is [tex]$1.8$[/tex] Fahrenheit degrees per Celsius degree.
3. [tex]$F(21) = 69.8$[/tex], meaning that [tex]$21^\circ\text{C}$[/tex] is equivalent to [tex]$69.8^\circ\text{F}$[/tex].
4. [tex]$F(-30) = -22$[/tex].
Thank you for reading the article When the temperature is 0 degrees Celsius the Fahrenheit temperature is 32 degrees When the Celsius temperature is 100 degrees the corresponding Fahrenheit temperature is. We hope the information provided is useful and helps you understand this topic better. Feel free to explore more helpful content on our website!
- You are operating a recreational vessel less than 39 4 feet long on federally controlled waters Which of the following is a legal sound device
- Which step should a food worker complete to prevent cross contact when preparing and serving an allergen free meal A Clean and sanitize all surfaces
- For one month Siera calculated her hometown s average high temperature in degrees Fahrenheit She wants to convert that temperature from degrees Fahrenheit to degrees
Rewritten by : Jeany