College

Thank you for visiting The Ruler Postulate suggests that there are many ways to assign coordinates to a line The Fahrenheit and Celsius temperature scales on a thermometer indicate. This page is designed to guide you through key points and clear explanations related to the topic at hand. We aim to make your learning experience smooth, insightful, and informative. Dive in and discover the answers you're looking for!

The Ruler Postulate suggests that there are many ways to assign coordinates to a line. The Fahrenheit and Celsius temperature scales on a thermometer indicate two such ways of assigning coordinates. A Fahrenheit temperature of [tex]32^{\circ}[/tex] corresponds to a Celsius temperature of [tex]0^{\circ}[/tex]. The formula, or rule, for converting a Fahrenheit temperature [tex]F[/tex] into a Celsius temperature [tex]C[/tex] is

[tex]C = \frac{5}{9}(F - 32)[/tex]

a. What Celsius temperatures correspond to Fahrenheit temperatures of [tex]212^{\circ}[/tex] and [tex]98.6^{\circ}[/tex]?

b. Solve the equation above for [tex]F[/tex] to obtain a rule for converting Celsius temperatures to Fahrenheit temperatures.

c. What Fahrenheit temperatures correspond to Celsius temperatures of [tex]-40^{\circ}[/tex] and [tex]2000^{\circ}[/tex]?

Answer :

Sure, let's go through the steps to solve the problem in detail.

### Part a
We need to convert Fahrenheit temperatures of [tex]\(212^{\circ}\)[/tex] and [tex]\(98.6^{\circ}\)[/tex] to Celsius.

The formula to convert Fahrenheit [tex]\(F\)[/tex] to Celsius [tex]\(C\)[/tex] is:
[tex]\[ C = \frac{5}{9}(F - 32) \][/tex]

1. For [tex]\(212^{\circ}F\)[/tex]:
[tex]\[ C = \frac{5}{9}(212 - 32) \][/tex]
[tex]\[ C = \frac{5}{9}(180) \][/tex]
[tex]\[ C = 100.0^{\circ}C \][/tex]

2. For [tex]\(98.6^{\circ}F\)[/tex]:
[tex]\[ C = \frac{5}{9}(98.6 - 32) \][/tex]
[tex]\[ C = \frac{5}{9}(66.6) \][/tex]
[tex]\[ C = 37.0^{\circ}C \][/tex]

So, the Celsius temperatures corresponding to [tex]\(212^{\circ}F\)[/tex] and [tex]\(98.6^{\circ}F\)[/tex] are [tex]\(100.0^{\circ}C\)[/tex] and [tex]\(37.0^{\circ}C\)[/tex] respectively.

### Part b
Now, we need to solve the equation [tex]\( C = \frac{5}{9}(F - 32) \)[/tex] for [tex]\(F\)[/tex] to obtain a rule for converting Celsius temperatures to Fahrenheit temperatures.

Starting with:
[tex]\[ C = \frac{5}{9}(F - 32) \][/tex]

1. Multiply both sides by 9 to get rid of the fraction:
[tex]\[ 9C = 5(F - 32) \][/tex]

2. Distribute the 5 on the right side:
[tex]\[ 9C = 5F - 160 \][/tex]

3. Add 160 to both sides:
[tex]\[ 5F = 9C + 160 \][/tex]

4. Finally, divide both sides by 5 to solve for [tex]\(F\)[/tex]:
[tex]\[ F = \frac{9C + 160}{5} \][/tex]

So, the formula to convert Celsius temperatures to Fahrenheit is:
[tex]\[ F = \frac{9C + 160}{5} \][/tex]

### Part c
We need to convert Celsius temperatures of [tex]\(-40^{\circ}\)[/tex] and [tex]\(2000^{\circ}\)[/tex] to Fahrenheit.

Using the formula we derived:
[tex]\[ F = \frac{9C + 160}{5} \][/tex]

1. For [tex]\(-40^{\circ}C\)[/tex]:
[tex]\[ F = \frac{9(-40) + 160}{5} \][/tex]
[tex]\[ F = \frac{-360 + 160}{5} \][/tex]
[tex]\[ F = \frac{-200}{5} \][/tex]
[tex]\[ F = -40.0^{\circ}F \][/tex]

2. For [tex]\(2000^{\circ}C\)[/tex]:
[tex]\[ F = \frac{9(2000) + 160}{5} \][/tex]
[tex]\[ F = \frac{18000 + 160}{5} \][/tex]
[tex]\[ F = \frac{18160}{5} \][/tex]
[tex]\[ F = 3632.0^{\circ}F \][/tex]

So, the Fahrenheit temperatures corresponding to [tex]\(-40^{\circ}C\)[/tex] and [tex]\(2000^{\circ}C\)[/tex] are [tex]\(-40.0^{\circ}F\)[/tex] and [tex]\(3632.0^{\circ}F\)[/tex] respectively.

Thank you for reading the article The Ruler Postulate suggests that there are many ways to assign coordinates to a line The Fahrenheit and Celsius temperature scales on a thermometer indicate. We hope the information provided is useful and helps you understand this topic better. Feel free to explore more helpful content on our website!

Rewritten by : Jeany