College

Thank you for visiting Given the function tex f x 4 x 5 3 tex for what values of tex x tex is tex f x 15 tex A. This page is designed to guide you through key points and clear explanations related to the topic at hand. We aim to make your learning experience smooth, insightful, and informative. Dive in and discover the answers you're looking for!

Given the function [tex]f(x) = 4|x - 5| + 3[/tex], for what values of [tex]x[/tex] is [tex]f(x) = 15[/tex]?

A. [tex]x = 2, x = 8[/tex]
B. [tex]x = 1.5, x = 8[/tex]
C. [tex]x = 2, x = 7.5[/tex]
D. [tex]x = 0.5, x = 7.5[/tex]

Answer :

To find the values of [tex]\( x \)[/tex] for which [tex]\( f(x) = 15 \)[/tex] given the function [tex]\( f(x) = 4|x-5| + 3 \)[/tex], we need to solve the equation [tex]\( 4|x-5| + 3 = 15 \)[/tex].

Here's a step-by-step solution:

1. Start with the given equation:
[tex]\[
4|x-5| + 3 = 15
\][/tex]

2. Isolate the absolute value term:
[tex]\[
4|x-5| + 3 - 3 = 15 - 3
\][/tex]
[tex]\[
4|x-5| = 12
\][/tex]

3. Divide both sides by 4 to further isolate the absolute value:
[tex]\[
|x-5| = \frac{12}{4}
\][/tex]
[tex]\[
|x-5| = 3
\][/tex]

4. Remove the absolute value by considering both cases:
[tex]\( |x-5| = 3 \)[/tex] means [tex]\( x-5 = 3 \)[/tex] or [tex]\( x-5 = -3 \)[/tex].

- Case 1: [tex]\( x-5 = 3 \)[/tex]
[tex]\[
x = 3 + 5
\][/tex]
[tex]\[
x = 8
\][/tex]

- Case 2: [tex]\( x-5 = -3 \)[/tex]
[tex]\[
x = -3 + 5
\][/tex]
[tex]\[
x = 2
\][/tex]

Thus, the values of [tex]\( x \)[/tex] that satisfy [tex]\( f(x) = 15 \)[/tex] are [tex]\( x = 2 \)[/tex] and [tex]\( x = 8 \)[/tex].

Conclusion:

The correct values of [tex]\( x \)[/tex] for which [tex]\( f(x) = 15 \)[/tex] are:
[tex]\[
x = 2 \, \text{and} \, x = 8
\][/tex]

So, the answer is:
[tex]\[
x = 2, \, x = 8
\][/tex]

Thank you for reading the article Given the function tex f x 4 x 5 3 tex for what values of tex x tex is tex f x 15 tex A. We hope the information provided is useful and helps you understand this topic better. Feel free to explore more helpful content on our website!

Rewritten by : Jeany