College

Thank you for visiting Determine whether the inverse of f is a function If so then find the inverse 33 tex f x 8x 3 tex 34 tex f. This page is designed to guide you through key points and clear explanations related to the topic at hand. We aim to make your learning experience smooth, insightful, and informative. Dive in and discover the answers you're looking for!

Determine whether the inverse of \( f \) is a function. If so, then find the inverse.

33. [tex]f(x) = 8x^3[/tex]

34. [tex]f(x) = -x^2 + 3[/tex]

35. [tex]f(x) = x^3 + 4[/tex]

36. [tex]f(x) = 9x^2, \, x \geq 0[/tex]

37. [tex]f(x) = \frac{1}{4}x^2[/tex]

38. [tex]f(x) = \frac{1}{5}x^5[/tex]

39. [tex]f(x) = 2x^2 - 3[/tex]

40. [tex]f(x) = x^4, \, x \geq 0[/tex]

41. [tex]f(x) = 5 - x^3[/tex]

42. [tex]f(x) = x^5 - 2[/tex]

43. [tex]f(x) = x^5 + 1[/tex]

44. [tex]f(x) = 3x^2 - 4[/tex]

45. [tex]f(x) = 9x^2 + 7, \, x \geq 0[/tex]

46. [tex]f(x) = \frac{1}{7}x^3 - 3[/tex]

47. [tex]f(x) = 2x^3 + 2[/tex]

48. [tex]f(x) = 2x^3 - 5[/tex]

49. [tex]f(x) = -x^2, \, x \geq 0[/tex]

50. [tex]f(x) = 16x^4 + 1, \, x \geq 0[/tex]

51. [tex]f(x) = 8x^3 - 6[/tex]

52. [tex]f(x) = 4x^2 - 1[/tex]

53. [tex]f(x) = \frac{1}{2}x^4 - 1, \, x \geq 0[/tex]

Answer :

Sure! Let's analyze each function and determine if its inverse is a function, and if so, find the inverse.

### 33. [tex]\( f(x) = 8x^3 \)[/tex]
The function [tex]\( f(x) = 8x^3 \)[/tex] is a cubic function. Cubic functions are one-to-one, meaning they have inverses that are also functions.

To find the inverse:
1. Start with [tex]\( y = 8x^3 \)[/tex].
2. Solve for [tex]\( x \)[/tex]:
[tex]\[ x = \left(\frac{y}{8}\right)^{1/3} \][/tex]

Thus, the inverse function is:
[tex]\[ f^{-1}(x) = \left(\frac{x}{8}\right)^{1/3} \][/tex]

### 34. [tex]\( f(x) = -x^2 + 3 \)[/tex]
This function is a parabola opening downwards. Parabolic functions do not have inverses that are functions over all values of [tex]\( x \)[/tex] because they are not one-to-one.

Thus, the inverse of this function is not a function.

### 35. [tex]\( f(x) = x^3 + 4 \)[/tex]
The function [tex]\( f(x) = x^3 + 4 \)[/tex] is another cubic function. Like the previous cubic example, this function has an inverse that is also a function.

To find the inverse:
1. Start with [tex]\( y = x^3 + 4 \)[/tex].
2. Solve for [tex]\( x \)[/tex]:
[tex]\[ y - 4 = x^3 \][/tex]
[tex]\[ x = (y - 4)^{1/3} \][/tex]

Thus, the inverse function is:
[tex]\[ f^{-1}(x) = (x - 4)^{1/3} \][/tex]

### 36. [tex]\( f(x) = 9x^2, \, x \geq 0 \)[/tex]
The function [tex]\( f(x) = 9x^2 \)[/tex] with the domain [tex]\( x \geq 0 \)[/tex] is a quadratic function with a restricted domain, making it one-to-one over its domain.

To find the inverse:
1. Start with [tex]\( y = 9x^2 \)[/tex].
2. Solve for [tex]\( x \)[/tex]:
[tex]\[ x = \sqrt{\frac{y}{9}} \][/tex]
Since [tex]\( x \geq 0 \)[/tex], we only take the positive square root.

Thus, the inverse function is:
[tex]\[ f^{-1}(x) = \sqrt{\frac{x}{9}}, \, x \geq 0 \][/tex]

These are the steps to determine the inverses of the functions in the list. Each function is considered individually to see if its inverse can also be a function.

Thank you for reading the article Determine whether the inverse of f is a function If so then find the inverse 33 tex f x 8x 3 tex 34 tex f. We hope the information provided is useful and helps you understand this topic better. Feel free to explore more helpful content on our website!

Rewritten by : Jeany