Thank you for visiting Classifying Simplifying Polynomials Simplify each polynomial and write it in standard form Then classify it based on its degree and number of terms 1 begin. This page is designed to guide you through key points and clear explanations related to the topic at hand. We aim to make your learning experience smooth, insightful, and informative. Dive in and discover the answers you're looking for!
Answer :
Sure! Let's simplify each polynomial, write them in standard form, and classify them based on their degree and number of terms.
### 1. [tex]\(18x^2 + x^{-1} - 20x + 5\)[/tex]
This expression seems to mistakenly include [tex]\(x^{-1}\)[/tex]. It doesn't make usual sense in polynomial context unless we're considering other special conditions (since polynomials can't have negative exponents). Let's assume it is a typo and focus on other terms:
- Simplifies to [tex]\(18x^2 - 20x + 5\)[/tex].
- Standard form: [tex]\(18x^2 - 20x + 5\)[/tex] (arrange terms from highest degree to lowest).
- Degree: 2 (highest power of [tex]\(x\)[/tex]).
- Number of terms: 3 (terms are [tex]\(18x^2\)[/tex], [tex]\(-20x\)[/tex], and [tex]\(5\)[/tex]).
### 2. [tex]\(5x^2 - 9x^3 - 8x + x^2\)[/tex]
- Combine like terms: [tex]\(5x^2 + x^2 = 6x^2\)[/tex].
- Simplify to [tex]\(-9x^3 + 6x^2 - 8x\)[/tex].
- Standard form: [tex]\(-9x^3 + 6x^2 - 8x\)[/tex].
- Degree: 3.
- Number of terms: 3.
### 3. [tex]\(x^3 - 24 - 5x^5 + 13\)[/tex]
- Combine constant terms: [tex]\(-24 + 13 = -11\)[/tex].
- Simplify to [tex]\(-5x^5 + x^3 - 11\)[/tex].
- Standard form: [tex]\(-5x^5 + x^3 - 11\)[/tex].
- Degree: 5.
- Number of terms: 3.
### 4. [tex]\(-19x + 5 + 19x\)[/tex]
- Combine like terms: [tex]\(-19x + 19x = 0\)[/tex].
- Simplify to [tex]\(5\)[/tex].
- Standard form: [tex]\(5\)[/tex].
- Degree: 0 (a constant).
- Number of terms: 1.
### 5. [tex]\(26x^4 - 9 + 3x - 17x^2\)[/tex]
- Already simplified.
- Standard form: [tex]\(26x^4 - 17x^2 + 3x - 9\)[/tex].
- Degree: 4.
- Number of terms: 4.
### 6. [tex]\(7x - 19 - 6x - 24 + 13x^2\)[/tex]
- Combine like terms: [tex]\(7x - 6x = x\)[/tex] and [tex]\(-19 - 24 = -43\)[/tex].
- Simplify to [tex]\(13x^2 + x - 43\)[/tex].
- Standard form: [tex]\(13x^2 + x - 43\)[/tex].
- Degree: 2.
- Number of terms: 3.
### 7. [tex]\(-13x^3 - 9x + 27x^3\)[/tex]
- Combine like terms: [tex]\(-13x^3 + 27x^3 = 14x^3\)[/tex].
- Simplify to [tex]\(14x^3 - 9x\)[/tex].
- Standard form: [tex]\(14x^3 - 9x\)[/tex].
- Degree: 3.
- Number of terms: 2.
### 8. [tex]\(4x - 18 - 5x + 17\)[/tex]
- Combine like terms: [tex]\(4x - 5x = -x\)[/tex] and [tex]\(-18 + 17 = -1\)[/tex].
- Simplify to [tex]\(-x - 1\)[/tex].
- Standard form: [tex]\(-x - 1\)[/tex].
- Degree: 1.
- Number of terms: 2.
### 9. [tex]\(39x^3 + 18x - 1 + 5x^4 - x^2\)[/tex]
- The expression simplifies to [tex]\(5x^4 + 39x^3 - x^2 + 18x - 1\)[/tex].
- Standard form: [tex]\(5x^4 + 39x^3 - x^2 + 18x - 1\)[/tex].
- Degree: 4.
- Number of terms: 5.
### 10. [tex]\(-45 - \frac{1}{8}x + 30 + 10x + 15\)[/tex]
- Combine constant terms: [tex]\(-45 + 30 + 15 = 0\)[/tex].
- Combine [tex]\(x\)[/tex] terms: [tex]\(10x - \frac{1}{8}x = \frac{79}{8}x\)[/tex].
- Simplify to [tex]\(\frac{79}{8}x\)[/tex].
- Standard form: [tex]\(\frac{79}{8}x\)[/tex].
- Degree: 1.
- Number of terms: 1.
### 11. [tex]\(11x^2 + (-x + 3x - 2x + 11x^2)\)[/tex]
- Combine like terms: [tex]\(-x + 3x - 2x = 0\)[/tex] and [tex]\(11x^2 + 11x^2 = 22x^2\)[/tex].
- Simplify to [tex]\(22x^2\)[/tex].
- Standard form: [tex]\(22x^2\)[/tex].
- Degree: 2.
- Number of terms: 1.
### 12. [tex]\(35x^3 + 12x^8 - 22x + x^3\)[/tex]
- Combine like terms: [tex]\(35x^3 + x^3 = 36x^3\)[/tex].
- Simplify to [tex]\(12x^8 + 36x^3 - 22x\)[/tex].
- Standard form: [tex]\(12x^8 + 36x^3 - 22x\)[/tex].
- Degree: 8.
- Number of terms: 3.
I hope this helps! Let me know if you have any questions.
### 1. [tex]\(18x^2 + x^{-1} - 20x + 5\)[/tex]
This expression seems to mistakenly include [tex]\(x^{-1}\)[/tex]. It doesn't make usual sense in polynomial context unless we're considering other special conditions (since polynomials can't have negative exponents). Let's assume it is a typo and focus on other terms:
- Simplifies to [tex]\(18x^2 - 20x + 5\)[/tex].
- Standard form: [tex]\(18x^2 - 20x + 5\)[/tex] (arrange terms from highest degree to lowest).
- Degree: 2 (highest power of [tex]\(x\)[/tex]).
- Number of terms: 3 (terms are [tex]\(18x^2\)[/tex], [tex]\(-20x\)[/tex], and [tex]\(5\)[/tex]).
### 2. [tex]\(5x^2 - 9x^3 - 8x + x^2\)[/tex]
- Combine like terms: [tex]\(5x^2 + x^2 = 6x^2\)[/tex].
- Simplify to [tex]\(-9x^3 + 6x^2 - 8x\)[/tex].
- Standard form: [tex]\(-9x^3 + 6x^2 - 8x\)[/tex].
- Degree: 3.
- Number of terms: 3.
### 3. [tex]\(x^3 - 24 - 5x^5 + 13\)[/tex]
- Combine constant terms: [tex]\(-24 + 13 = -11\)[/tex].
- Simplify to [tex]\(-5x^5 + x^3 - 11\)[/tex].
- Standard form: [tex]\(-5x^5 + x^3 - 11\)[/tex].
- Degree: 5.
- Number of terms: 3.
### 4. [tex]\(-19x + 5 + 19x\)[/tex]
- Combine like terms: [tex]\(-19x + 19x = 0\)[/tex].
- Simplify to [tex]\(5\)[/tex].
- Standard form: [tex]\(5\)[/tex].
- Degree: 0 (a constant).
- Number of terms: 1.
### 5. [tex]\(26x^4 - 9 + 3x - 17x^2\)[/tex]
- Already simplified.
- Standard form: [tex]\(26x^4 - 17x^2 + 3x - 9\)[/tex].
- Degree: 4.
- Number of terms: 4.
### 6. [tex]\(7x - 19 - 6x - 24 + 13x^2\)[/tex]
- Combine like terms: [tex]\(7x - 6x = x\)[/tex] and [tex]\(-19 - 24 = -43\)[/tex].
- Simplify to [tex]\(13x^2 + x - 43\)[/tex].
- Standard form: [tex]\(13x^2 + x - 43\)[/tex].
- Degree: 2.
- Number of terms: 3.
### 7. [tex]\(-13x^3 - 9x + 27x^3\)[/tex]
- Combine like terms: [tex]\(-13x^3 + 27x^3 = 14x^3\)[/tex].
- Simplify to [tex]\(14x^3 - 9x\)[/tex].
- Standard form: [tex]\(14x^3 - 9x\)[/tex].
- Degree: 3.
- Number of terms: 2.
### 8. [tex]\(4x - 18 - 5x + 17\)[/tex]
- Combine like terms: [tex]\(4x - 5x = -x\)[/tex] and [tex]\(-18 + 17 = -1\)[/tex].
- Simplify to [tex]\(-x - 1\)[/tex].
- Standard form: [tex]\(-x - 1\)[/tex].
- Degree: 1.
- Number of terms: 2.
### 9. [tex]\(39x^3 + 18x - 1 + 5x^4 - x^2\)[/tex]
- The expression simplifies to [tex]\(5x^4 + 39x^3 - x^2 + 18x - 1\)[/tex].
- Standard form: [tex]\(5x^4 + 39x^3 - x^2 + 18x - 1\)[/tex].
- Degree: 4.
- Number of terms: 5.
### 10. [tex]\(-45 - \frac{1}{8}x + 30 + 10x + 15\)[/tex]
- Combine constant terms: [tex]\(-45 + 30 + 15 = 0\)[/tex].
- Combine [tex]\(x\)[/tex] terms: [tex]\(10x - \frac{1}{8}x = \frac{79}{8}x\)[/tex].
- Simplify to [tex]\(\frac{79}{8}x\)[/tex].
- Standard form: [tex]\(\frac{79}{8}x\)[/tex].
- Degree: 1.
- Number of terms: 1.
### 11. [tex]\(11x^2 + (-x + 3x - 2x + 11x^2)\)[/tex]
- Combine like terms: [tex]\(-x + 3x - 2x = 0\)[/tex] and [tex]\(11x^2 + 11x^2 = 22x^2\)[/tex].
- Simplify to [tex]\(22x^2\)[/tex].
- Standard form: [tex]\(22x^2\)[/tex].
- Degree: 2.
- Number of terms: 1.
### 12. [tex]\(35x^3 + 12x^8 - 22x + x^3\)[/tex]
- Combine like terms: [tex]\(35x^3 + x^3 = 36x^3\)[/tex].
- Simplify to [tex]\(12x^8 + 36x^3 - 22x\)[/tex].
- Standard form: [tex]\(12x^8 + 36x^3 - 22x\)[/tex].
- Degree: 8.
- Number of terms: 3.
I hope this helps! Let me know if you have any questions.
Thank you for reading the article Classifying Simplifying Polynomials Simplify each polynomial and write it in standard form Then classify it based on its degree and number of terms 1 begin. We hope the information provided is useful and helps you understand this topic better. Feel free to explore more helpful content on our website!
- You are operating a recreational vessel less than 39 4 feet long on federally controlled waters Which of the following is a legal sound device
- Which step should a food worker complete to prevent cross contact when preparing and serving an allergen free meal A Clean and sanitize all surfaces
- For one month Siera calculated her hometown s average high temperature in degrees Fahrenheit She wants to convert that temperature from degrees Fahrenheit to degrees
Rewritten by : Jeany