College

Thank you for visiting Divide using long division tex frac 3x 5 22x 4 13x 3 39x 2 14x 6 x 3 6x 2 3x 5 tex SHOW WORK. This page is designed to guide you through key points and clear explanations related to the topic at hand. We aim to make your learning experience smooth, insightful, and informative. Dive in and discover the answers you're looking for!

Divide using long division:

[tex]
\frac{-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6}{x^3 + 6x^2 - 3x - 5}
[/tex]

(SHOW WORK)

Answer :

Sure, let's solve the given problem step-by-step using long division.

We need to divide the polynomial [tex]\(-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6\)[/tex] by the polynomial [tex]\(x^3 + 6x^2 - 3x - 5\)[/tex].

### Step 1: Set up the division

The dividend is [tex]\(-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6\)[/tex] and the divisor is [tex]\(x^3 + 6x^2 - 3x - 5\)[/tex].

We'll write it in the long division format:

```
________________
x^3 + 6x^2 - 3x - 5 | -3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6
```

### Step 2: Divide the leading terms

First, we divide the leading term of the dividend by the leading term of the divisor:
[tex]\[
\frac{ -3x^5 }{ x^3 } = -3x^2
\][/tex]

### Step 3: Multiply and subtract

Now, we multiply [tex]\( -3x^2 \)[/tex] by the entire divisor:
[tex]\[
-3x^2 \cdot (x^3 + 6x^2 - 3x - 5) = -3x^5 - 18x^4 + 9x^3 + 15x^2
\][/tex]

We subtract this from the dividend:
[tex]\[
\begin{align*}
(-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6) \\
- (-3x^5 - 18x^4 + 9x^3 + 15x^2) \\
= 0x^5 - 4x^4 - 22x^3 + 24x^2 + 14x - 6
\end{align*}
\][/tex]

### Step 4: Repeat the process

Next, we divide the new leading term by the leading term of the divisor:
[tex]\[
\frac{-4x^4 }{ x^3 } = -4x
\][/tex]

Multiply and subtract:
[tex]\[
\begin{align*}
-4x \cdot (x^3 + 6x^2 - 3x - 5) = -4x^4 - 24x^3 + 12x^2 + 20x \\
0x^5 - 4x^4 - 22x^3 + 24x^2 + 14x - 6 \\
- ( -4x^4 - 24x^3 + 12x^2 + 20x) \\
= 0x^4 + 2x^3 + 12x^2 - 6x - 6
\end{align*}
\][/tex]

### Step 5: Continue the process

Next, we divide:
[tex]\[
\frac{2x^3}{x^3} = 2
\][/tex]

Multiply and subtract:
[tex]\[
\begin{align*}
2 \cdot (x^3 + 6x^2 - 3x - 5) = 2x^3 + 12x^2 - 6x - 10 \\
0x^4 + 2x^3 + 12x^2 - 6x - 6 \\
- ( 2x^3 + 12x^2 - 6x - 10) \\
= 0x^3 + 0x^2 + 0x + 4
\end{align*}
\][/tex]

### Step 6: Write the final quotient and remainder

The division process is complete, and the quotient is:

[tex]\[
-3x^2 - 4x + 2
\][/tex]

And the remainder is:
[tex]\[
4
\][/tex]

Therefore, the final answer is:
[tex]\[
-3x^2 - 4x + 2 \quad \text{with a remainder of} \quad 4
\][/tex]

So, [tex]\(\frac{-3x^5 - 22x^4 - 13x^3 + 39x^2 + 14x - 6}{x^3 + 6x^2 - 3x - 5} = -3x^2 - 4x + 2 + \frac{4}{x^3 + 6x^2 - 3x - 5}\)[/tex].

Thank you for reading the article Divide using long division tex frac 3x 5 22x 4 13x 3 39x 2 14x 6 x 3 6x 2 3x 5 tex SHOW WORK. We hope the information provided is useful and helps you understand this topic better. Feel free to explore more helpful content on our website!

Rewritten by : Jeany