Thank you for visiting In Exercises 39 46 determine whether the function is even odd or neither 39 tex h x 4x 7 tex 40 tex g x 2x. This page is designed to guide you through key points and clear explanations related to the topic at hand. We aim to make your learning experience smooth, insightful, and informative. Dive in and discover the answers you're looking for!
Answer :
To determine whether each function is even, odd, or neither, we can evaluate the functions using the following definitions:
1. A function [tex]\( f(x) \)[/tex] is even if [tex]\( f(-x) = f(x) \)[/tex] for all [tex]\( x \)[/tex].
2. A function [tex]\( f(x) \)[/tex] is odd if [tex]\( f(-x) = -f(x) \)[/tex] for all [tex]\( x \)[/tex].
3. If neither condition is satisfied, the function is neither.
Let's analyze each function:
39. [tex]\( h(x) = 4x^7 \)[/tex]
Check for oddness:
- [tex]\( h(-x) = 4(-x)^7 = -4x^7 \)[/tex]
- Since [tex]\( h(-x) = -h(x) \)[/tex], the function is odd.
40. [tex]\( g(x) = -2x^6 + x^2 \)[/tex]
Check for evenness:
- [tex]\( g(-x) = -2(-x)^6 + (-x)^2 = -2x^6 + x^2 \)[/tex]
- Since [tex]\( g(-x) = g(x) \)[/tex], the function is even.
41. [tex]\( f(x) = x^4 + 3x^2 - 2x \)[/tex]
Check both conditions:
- [tex]\( f(-x) = (-x)^4 + 3(-x)^2 - 2(-x) = x^4 + 3x^2 + 2x \)[/tex]
- Neither [tex]\( f(-x) = f(x) \)[/tex] nor [tex]\( f(-x) = -f(x) \)[/tex] is true, so the function is neither.
42. [tex]\( f(x) = x^5 + 3x^3 - x \)[/tex]
Check for oddness:
- [tex]\( f(-x) = (-x)^5 + 3(-x)^3 - (-x) = -x^5 - 3x^3 + x \)[/tex]
- Since [tex]\( f(-x) = -f(x) \)[/tex], the function is odd.
43. [tex]\( g(x) = x^2 + 5x + 1 \)[/tex]
Check both conditions:
- [tex]\( g(-x) = (-x)^2 + 5(-x) + 1 = x^2 - 5x + 1 \)[/tex]
- Neither [tex]\( g(-x) = g(x) \)[/tex] nor [tex]\( g(-x) = -g(x) \)[/tex] is true, so the function is neither.
44. [tex]\( f(x) = -x^3 + 2x - 9 \)[/tex]
Check both conditions:
- [tex]\( f(-x) = -(-x)^3 + 2(-x) - 9 = x^3 - 2x - 9 \)[/tex]
- Neither [tex]\( f(-x) = f(x) \)[/tex] nor [tex]\( f(-x) = -f(x) \)[/tex] is true, so the function is neither.
45. [tex]\( f(x) = x^4 - 12x^2 \)[/tex]
Check for evenness:
- [tex]\( f(-x) = (-x)^4 - 12(-x)^2 = x^4 - 12x^2 \)[/tex]
- Since [tex]\( f(-x) = f(x) \)[/tex], the function is even.
46. [tex]\( h(x) = x^5 + 3x^4 \)[/tex]
Check both conditions:
- [tex]\( h(-x) = (-x)^5 + 3(-x)^4 = -x^5 + 3x^4 \)[/tex]
- Neither [tex]\( h(-x) = h(x) \)[/tex] nor [tex]\( h(-x) = -h(x) \)[/tex] is true, so the function is neither.
These analyses result in the following classifications for each function:
- [tex]\( h(x) = 4x^7 \)[/tex] is odd.
- [tex]\( g(x) = -2x^6 + x^2 \)[/tex] is even.
- [tex]\( f(x) = x^4 + 3x^2 - 2x \)[/tex] is neither.
- [tex]\( f(x) = x^5 + 3x^3 - x \)[/tex] is odd.
- [tex]\( g(x) = x^2 + 5x + 1 \)[/tex] is neither.
- [tex]\( f(x) = -x^3 + 2x - 9 \)[/tex] is neither.
- [tex]\( f(x) = x^4 - 12x^2 \)[/tex] is even.
- [tex]\( h(x) = x^5 + 3x^4 \)[/tex] is neither.
1. A function [tex]\( f(x) \)[/tex] is even if [tex]\( f(-x) = f(x) \)[/tex] for all [tex]\( x \)[/tex].
2. A function [tex]\( f(x) \)[/tex] is odd if [tex]\( f(-x) = -f(x) \)[/tex] for all [tex]\( x \)[/tex].
3. If neither condition is satisfied, the function is neither.
Let's analyze each function:
39. [tex]\( h(x) = 4x^7 \)[/tex]
Check for oddness:
- [tex]\( h(-x) = 4(-x)^7 = -4x^7 \)[/tex]
- Since [tex]\( h(-x) = -h(x) \)[/tex], the function is odd.
40. [tex]\( g(x) = -2x^6 + x^2 \)[/tex]
Check for evenness:
- [tex]\( g(-x) = -2(-x)^6 + (-x)^2 = -2x^6 + x^2 \)[/tex]
- Since [tex]\( g(-x) = g(x) \)[/tex], the function is even.
41. [tex]\( f(x) = x^4 + 3x^2 - 2x \)[/tex]
Check both conditions:
- [tex]\( f(-x) = (-x)^4 + 3(-x)^2 - 2(-x) = x^4 + 3x^2 + 2x \)[/tex]
- Neither [tex]\( f(-x) = f(x) \)[/tex] nor [tex]\( f(-x) = -f(x) \)[/tex] is true, so the function is neither.
42. [tex]\( f(x) = x^5 + 3x^3 - x \)[/tex]
Check for oddness:
- [tex]\( f(-x) = (-x)^5 + 3(-x)^3 - (-x) = -x^5 - 3x^3 + x \)[/tex]
- Since [tex]\( f(-x) = -f(x) \)[/tex], the function is odd.
43. [tex]\( g(x) = x^2 + 5x + 1 \)[/tex]
Check both conditions:
- [tex]\( g(-x) = (-x)^2 + 5(-x) + 1 = x^2 - 5x + 1 \)[/tex]
- Neither [tex]\( g(-x) = g(x) \)[/tex] nor [tex]\( g(-x) = -g(x) \)[/tex] is true, so the function is neither.
44. [tex]\( f(x) = -x^3 + 2x - 9 \)[/tex]
Check both conditions:
- [tex]\( f(-x) = -(-x)^3 + 2(-x) - 9 = x^3 - 2x - 9 \)[/tex]
- Neither [tex]\( f(-x) = f(x) \)[/tex] nor [tex]\( f(-x) = -f(x) \)[/tex] is true, so the function is neither.
45. [tex]\( f(x) = x^4 - 12x^2 \)[/tex]
Check for evenness:
- [tex]\( f(-x) = (-x)^4 - 12(-x)^2 = x^4 - 12x^2 \)[/tex]
- Since [tex]\( f(-x) = f(x) \)[/tex], the function is even.
46. [tex]\( h(x) = x^5 + 3x^4 \)[/tex]
Check both conditions:
- [tex]\( h(-x) = (-x)^5 + 3(-x)^4 = -x^5 + 3x^4 \)[/tex]
- Neither [tex]\( h(-x) = h(x) \)[/tex] nor [tex]\( h(-x) = -h(x) \)[/tex] is true, so the function is neither.
These analyses result in the following classifications for each function:
- [tex]\( h(x) = 4x^7 \)[/tex] is odd.
- [tex]\( g(x) = -2x^6 + x^2 \)[/tex] is even.
- [tex]\( f(x) = x^4 + 3x^2 - 2x \)[/tex] is neither.
- [tex]\( f(x) = x^5 + 3x^3 - x \)[/tex] is odd.
- [tex]\( g(x) = x^2 + 5x + 1 \)[/tex] is neither.
- [tex]\( f(x) = -x^3 + 2x - 9 \)[/tex] is neither.
- [tex]\( f(x) = x^4 - 12x^2 \)[/tex] is even.
- [tex]\( h(x) = x^5 + 3x^4 \)[/tex] is neither.
Thank you for reading the article In Exercises 39 46 determine whether the function is even odd or neither 39 tex h x 4x 7 tex 40 tex g x 2x. We hope the information provided is useful and helps you understand this topic better. Feel free to explore more helpful content on our website!
- You are operating a recreational vessel less than 39 4 feet long on federally controlled waters Which of the following is a legal sound device
- Which step should a food worker complete to prevent cross contact when preparing and serving an allergen free meal A Clean and sanitize all surfaces
- For one month Siera calculated her hometown s average high temperature in degrees Fahrenheit She wants to convert that temperature from degrees Fahrenheit to degrees
Rewritten by : Jeany