High School

Thank you for visiting Find the value of the linear correlation coefficient r x 22 6 36 6 15 6 35 0 17 5 y 7 6 6 2. This page is designed to guide you through key points and clear explanations related to the topic at hand. We aim to make your learning experience smooth, insightful, and informative. Dive in and discover the answers you're looking for!

Find the value of the linear correlation coefficient \( r \).

x: 22.6, 36.6, 15.6, 35.0, 17.5

y: 7, 6, 6, 2, 6

Group of answer choices:

A. 0

B. -0.478

C. 0.537

D. -0.537

Answer :

To find the linear correlation coefficient, also known as Pearson’s correlation coefficient [tex]r[/tex], we need to use the formula:

[tex]r = \frac{n(\sum xy) - (\sum x)(\sum y)}{\sqrt{[n \sum x^2 - (\sum x)^2][n \sum y^2 - (\sum y)^2]}}[/tex]

where:

  • [tex]n[/tex] is the number of data points,
  • [tex]\sum xy[/tex] is the sum of the product of paired scores,
  • [tex]\sum x[/tex] is the sum of [tex]x[/tex]-scores,
  • [tex]\sum y[/tex] is the sum of [tex]y[/tex]-scores,
  • [tex]\sum x^2[/tex] is the sum of the squares of [tex]x[/tex]-scores,
  • [tex]\sum y^2[/tex] is the sum of the squares of [tex]y[/tex]-scores.

First, let's list the data:

[tex]x: 22.6, 36.6, 15.6, 35.0, 17.5[/tex]

[tex]y: 7, 6, 6, 2, 6[/tex]

Next, calculate the necessary sums:

  1. [tex]\sum x = 22.6 + 36.6 + 15.6 + 35.0 + 17.5 = 127.3[/tex]

  2. [tex]\sum y = 7 + 6 + 6 + 2 + 6 = 27[/tex]

  3. [tex]\sum xy = (22.6 \times 7) + (36.6 \times 6) + (15.6 \times 6) + (35.0 \times 2) + (17.5 \times 6) = 158.2 + 219.6 + 93.6 + 70 + 105 = 646.4[/tex]

  4. [tex]\sum x^2 = (22.6^2) + (36.6^2) + (15.6^2) + (35.0^2) + (17.5^2) = 510.76 + 1339.56 + 243.36 + 1225 + 306.25 = 3624.93[/tex]

  5. [tex]\sum y^2 = 7^2 + 6^2 + 6^2 + 2^2 + 6^2 = 49 + 36 + 36 + 4 + 36 = 161[/tex]

Substitute these values into the formula:

[tex]r = \frac{5(646.4) - (127.3)(27)}{\sqrt{[5(3624.93) - 127.3^2][5(161) - 27^2]}}[/tex]

[tex]r = \frac{3232 - 3437.1}{\sqrt{[18124.65 - 16210.29][805-729]}}[/tex]

[tex]r = \frac{-205.1}{\sqrt{1914.36 \times 76}}[/tex]

[tex]r = \frac{-205.1}{\sqrt{145892.16}}[/tex]

[tex]r = \frac{-205.1}{381.906} \approx -0.537[/tex]

The calculated value of the linear correlation coefficient [tex]r[/tex] is approximately [tex]-0.537[/tex], which corresponds to the negative correlation between the [tex]x[/tex] and [tex]y[/tex] values. The negative sign indicates that as [tex]x[/tex] increases, [tex]y[/tex] tends to decrease. Thus, the correct answer is -0.537.

Thank you for reading the article Find the value of the linear correlation coefficient r x 22 6 36 6 15 6 35 0 17 5 y 7 6 6 2. We hope the information provided is useful and helps you understand this topic better. Feel free to explore more helpful content on our website!

Rewritten by : Jeany